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Abstract 

Unit testing, a common step in software development, 
presents a challenge. When produced manually, unit test 
suites are often insufficient to identify defects. The main 
alternative is to use one of a variety of automatic unit test 
generation tools: these are able to produce and execute a 
large number of test inputs that extensively exercise the 
unit under test. However, without a priori specifications, 
developers need to manually verify the outputs of these 
test executions, which is generally impractical. To reduce 
this cost, unit test selection techniques may be used to 
help select a subset of automatically generated test inputs. 
Then developers can verify their outputs, equip them with 
test oracles, and put them into the existing test suite. In 
this paper, we present the operational violation approach 
for unit test selection, a black-box approach without 
requiring a priori specifications. The approach 
dynamically generates operational abstractions from 
executions of the existing unit test suite. Any 
automatically generated tests violating the operational 
abstractions are identified as candidates for selection. In 
addition, these operational abstractions can guide test 
generation tools to produce better tests. To experiment 
with this approach, we integrated the use of Daikon (a 
dynamic invariant detection tool) and Jtest (a commercial 
Java unit testing tool). An experiment is conducted to 
assess this approach. 

1. Introduction 

The “test first” principle, as advocated by the extreme 
programming development process [2][3], requires unit 
tests to be constructed and maintained before, during, and 
after the source code is written. A unit test suite comprises 
a set of test cases. A test case consists of a test input and a 
test oracle, which is used to check the correctness of the 
test result. Developers usually need to manually generate 
the test cases based on written or, more often, unwritten 
requirements. In practice, developers tend to write a 
relatively small number of unit tests, which in turn tend to 
be useful but insufficient. Some commercial tools for Java 
unit testing, such as ParaSoft’s Jtest [14], attempt to fill 
the gaps not covered by any manually generated unit tests. 
These tools can automatically generate a large number of 

unit test inputs to exercise the program. However, no test 
oracles are produced for these automatically generated test 
inputs unless developers do some additional work: in 
particular, they need to write some formal specifications 
or runtime assertions [5], which seems to be uncommon in 
practice. Without a priori specifications, manually 
verifying the outputs of such a large number of test inputs 
requires intensive labor, which is impractical. Unit test 
selection is a means to address this problem by selecting 
the most valuable subset of the automatically generated 
test inputs. Then developers can inspect the executions of 
this much smaller set of test inputs to check the 
correctness and to add oracles.  

Operational violation is a black-box test selection 
approach that does not require a priori specifications. An 
operational abstraction describes the actual behavior 
during program execution of an existing unit test suite 
[12]. If the execution of an automatically generated test 
input violates an operational abstraction, this test input is 
chosen as one of the test selection candidates. The key 
idea behind this approach is that the violating test 
exercises a new feature of program behavior that is not 
covered by the existing test suite. We have implemented 
this approach by integrating Daikon [8] (a dynamic 
invariant detection tool) and Jtest [14] (a commercial Java 
unit testing tool).  

The next section presents background information on 
the unit test selection problem and two techniques that are 
integrated in our approach: operational abstraction 
generation and specification-based unit test generation. 
Section 3 describes the motivating example that is used to 
illustrate our approach. Section 4 presents our operational 
violation approach. Section 5 describes the experiment 
that is conducted to assess the approach. Section 6 
discusses related work, and then Section 7 concludes. 

2. Background 

2.1. Unit test selection 

In this work, the objective of unit test selection is to 
select the most valuable subset of the automatically 
generated test inputs, allowing a developer both to 
manually verify their test results and to augment the 
existing unit tests. There are two closely related goals. For 
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fault detection, the most valuable test inputs are those that 
have the highest probability of exposing faults and 
verifying their test results can improve the probability of 
detecting faults. For test augmentation, the most valuable 
test inputs are those that complement the existing tests to 
together achieve a better testing criterion.  

More formally, the objective of unit test selection in 
this context is to answer the following question as 
inexpensively as possible: 

Given a program unit u, a set S of existing tests for u,
and a test t from a set S’ of unselected tests for u, does the 
execution of t exercise at least one new feature that is not 
exercised by the execution of any test in S?

If the answer is yes, t is removed from S’ and put into 
S. Otherwise, t is removed from S’ and discarded. In this 
work, the initial set S is the existing unit tests, which are 
usually manually written. The set S’ of unselected tests is 
automatically generated tests. The term feature is 
intentionally vague, since it can be defined in different 
ways. For fault detection, a new feature could be a fault-
revealing behavior that does not occur during executions 
of the existing tests.  In white-box test augmentation, a 
new feature could be a program behavior exhibited by 
executing a new structural entity, such as statement, 
branch, or def-use pair. In other words, the white-box test 
augmentation is based on residual structural coverage 
[18]. In black-box test augmentation, a feature could be a 
program behavior exhibited by covering a new predicate 
in a priori specifications [6]. 

Since manual effort is required to verify the results of 
selected test inputs, it is important to select a relatively 
small number of tests.  This is different from the problems 
that traditional test selection techniques address [6][12]. 
In those problems, there are test oracles for unselected test 
inputs. Therefore, selecting a relatively large number of 
tests during selection is usually acceptable for those 
problems, but is not practical in this work.  

2.2. Operational abstraction generation 

An operational abstraction is a collection of logical 
statements that abstract the program’s runtime behavior 
[12]. It is syntactically identical to a formal specification. 
In contrast to a formal specification, which expresses 
desired behavior, an operational abstraction expresses 
observed behavior. Daikon [8], a dynamic invariant 
detection tool, is used to infer operational abstractions 
from program executions of test suites. Like other 
dynamic analysis techniques, the quality of the test suite 
affects the quality of the analysis. Deficient test suites or a 
subset of sufficient test suites may not help to infer a 
generalizable program property. Nonetheless, operational 
abstractions inferred from the executed test suites 
constitute a summary of the test execution history. 

2.3. Specification-based unit test generation 

Given a formal specification, specification-based unit 
test generation tools can automatically generate test inputs 
for a unit. A specification for a class generally consists of 
preconditions and postconditions for methods, in addition 
to class invariants for the class [16]. Preconditions specify 
conditions that must hold before a method can be 
executed. Postconditions specify conditions that must hold 
after a method is completed. Class invariants specify 
conditions that the objects of the class should always 
satisfy. They are checked for every non-static, non-private 
method entry and exit, and for every non-private 
constructor exit. Class invariants can be treated as 
preconditions and postconditions for these methods. 

 Filtering the test input space based on preconditions 
has been used to effectively automate unit test generation 
[4]. Automatically generating test inputs to exercise some 
particular postconditions or assertions has also been 
attempted [9]. A commercial Java unit testing tool, 
ParaSoft’s Jtest, can automatically generate unit tests for a 
Java class [14]. When no specifications are provided, Jtest 
can automatically generate test inputs to perform white-
box testing. When specifications are provided with the 
class, Jtest can make use of them to perform black-box 
testing. If the code has preconditions, Jtest tries to find 
inputs that satisfy all of them. If the code has 
postconditions, Jtest creates test inputs that verify whether
the code satisfies these conditions. If the code has class 
invariants, Jtest creates test inputs that try to make them 
fail. By default, Jtest tests each method by generating 
arguments for them and calling them independently. In 
other words, Jtest basically tries the calling sequences of 
length one by default. Tool users can set the length of 
calling sequences in the range of one to three. If a calling 
sequence of length three is specified, Jtest first tries all 
calling sequences of length one followed by all those of 
length two and three sequentially. 

3. Motivating Example

As a motivating example, we use a Java 
implementation of a bounded stack that stores unique 
elements of integer type. Figure 1 shows the class 
including the implementations of several methods that we 
shall refer to in the next section. Stotts et al. coded this 
Java implementation to experiment their algebraic-
specification-based method for systematically creating 
unit tests [20]; they provide a web link to the full source 
code and associated test suites. They have defined two 
unit test suites for this class: a basic JUnit [15] test suite 
(8 tests), in which one test method is generated for a 
public method in the target class; and a JAX test suite (16 
tests), in which one test method is generated for an axiom 
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in the abstract data type specification. The basic JUnit test 
suite does not expose any fault but one of the JAX test 
cases exposes one fault (handling a pop operation on an 
empty stack incorrectly). In practice, developers usually 
fix the faults exposed by existing unit tests before they 
augment the unit test suite. In this example and for our 
analysis of our approach, instead of fixing the exposed 
fault, we remove this fault-revealing test case from the 
JAX test suite to make all the existing test cases pass. 

public class uniqueBoundedStack { 
  /** @invariant this.max==this.elems.length */ 
  private int[] elems; 
  private int numberOfElements;  
  private int max; 

  public uniqueBoundedStack() { 
    numberOfElements = 0; 
    max = 2; 
    elems = new int[max]; 
  } 

  /** @pre 0<= this.numberOfElements <= this.max */ 
  /** @post $result==$pre(int,this.numberOfElements)*/ 
  public int getNumberOfElements() { 
    return numberOfElements;
  } 

  public void pop(){ 
    numberOfElements--; 
  }

  public int top(){ 
    if (numberOfElements < 1) { 
      System.out.println("Empty Stack"); 
      return -1; 
    } else { 
      return elems[numberOfElements-1]; 
    } 
  } 

  public boolean isMember(int k) { 
    for(int index=0; index<numberOfElements; index++) 
      if (k==elems[index]) 
        return true; 
    return false;    
  }  

  public void push(int k) {…} 
  public boolean isEmpty() {…} 
  public boolean isFull() {…} 
  public int maxSize() {…} 
  public boolean equals(uniqueBoundedStack s) {…} 
  public int[] getArray() {…} 
};

Figure 1. The uniqueBoundedStack program 

The code in Figure 1 is annotated with some Design-
by-Contract (DbC) comments [13], the approach used in 
this example to define the class specification. 
@invariant is used to denote class invariants. @pre and 
@post are used to denote the preconditions and 
postconditions, respectively. In the postconditions, the 
$pre keyword is used to refer to the value of an 
expression immediately before calling the method. The 
syntax to use it is $pre(ExpressionType, 

Expression).  The $result keyword is used to 
represent the return value of the method. 

4. Operational Violation Approach 

This section describes the operational violation 
approach. Section 4.1 explains the basic technique of the 
approach. Section 4.2 presents the precondition removal 
technique to complement the basic technique. Section 4.3 
describes the iterative process of applying these 
techniques. Section 4.4 illustrates the rationales behind 
this approach. 

4.1. Basic technique

      Figure 2. An overview of the basic technique 

In the basic technique (Figure 2), operational 
abstractions are inferred from program executions of the 
existing unit test suite using Daikon. The Daikon toolset is 
extended to insert the operational abstractions into the 
source code as DbC comments. The resulting code is fed 
to Jtest, which automatically generates and executes tests. 
The two symptoms of an operational violation are that an 
operational abstraction is evaluated to be false, or that an 
exception is thrown while evaluating an operational 
abstraction. When a certain number of operational 
violations have occurred before Jtest exhausts its testing 
repository, it stops generating test inputs and reports 
operational violations. All the reported operational 
violations, including the violating test inputs, are exported 
to a text file. Given the exported text file, a Perl script was 
developed to automatically comment out the violated 
operational abstractions in the source code. At the same 
time, the operational violations are collected. Then Jtest is 
invoked again, using a script, given the program with 
reduced operational abstractions. The preceding 
procedure is repeated automatically until no operational 
violations are found.  

Given the collected operational violations, a Perl script 
was developed to select the first encountered test for each 
violated operational abstraction. Then the selected 
violating tests are sorted based on the number of their 
violated operational abstractions. The tests that violate 
more operational abstractions are put before those that 
violate fewer ones. The script produces a JUnit [15] test 
class, which contains the sorted list of violating test inputs 
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as well as their violated operational abstractions. An 
integration tool was developed to fully automate the 
preceding steps, including invoking Daikon and Jtest, and 
postprocessing the text file. After running the integration 
tool, developers can then inspect the resulting sorted tests 
to verify the correctness of their executions. Optionally, 
developers can add assertions for the test inputs as test 
oracles for regression testing. 

One example of an operational violation is shown in 
Figure 3. The example, which indicates a deficiency of the 
JAX test suite, shows method isMember’s two violated 
postconditions followed by the violating test. This 
violating test should be added to the existing test suite.  

isMember:  
@post: [($pre(int , k) == 3) == ($result == true)]  
@post: [($pre(int , k) == 3) == (this.numberOfElements == 1)]  
For input:   
 uniqueBoundedStack THIS = new uniqueBoundedStack ();  
 boolean RETVAL = THIS.isMember (3);  

Figure 3.  An example of operational violations using 
the basic technique 

4.2. Precondition removal technique 

In the basic technique, when the existing test suite is 
deficient, the inferred preconditions might be so 
restrictive that Jtest filters out those legal test inputs 
during test generation and execution. However, we need 
to exercise the unit under more circumstances than what is 
constrained by the inferred preconditions. To do this, 
before the annotated code is fed to Jtest, we remove all 
precondition comments and we thus exercise the unit 
under a broader variety of test inputs. Indeed, removing 
preconditions can make test generation tools less guided, 
especially those tools that generate tests mainly based on 
preconditions [4]. The basic technique and this 
precondition removal technique are used together to 
complement each other. 

Figure 4 shows two examples of operational violations 
and the use of this technique. The example in the upper 
part indicates a deficiency of the basic JUnit test suite, and 
the violating test exposes the fault detected by the original 
JAX test suite. The example in the lower part shows a 
deficiency of the JAX test suite that exposes another new 
fault, one not reported in the original experiment [20]. If 
this stack implementation can accommodate negative 
integer elements, this operational violation shows that 
using –1 as an exception indicator makes the top method 
work incorrectly when the integer –1 is put on top of the 
stack.  This is a typical value-sensitive fault and even a 
full-path-coverage test suite cannot guarantee to expose 
this fault. This violation is not reported by the basic 
technique, since there are several inferred preconditions 

for method top to prevent the element –1 from being on 
top of the stack, such as  

{ for (int i = 0 ; i <= this.elems.length-1; i++)     
                 $assert ((this.elems[i] >= 0));   } 

 where $assert is used to denote an assertion statement. 

pop:  
@post: [( this.elems[this.numberOfElements] ==   
        this.elems[$pre(int, this.numberOfElements)-1] )]  
@post: [this.numberOfElements == 0 ||  

this.numberOfElements == 1]  
@invariant: [this.numberOfElements == 0 ||  
               this.numberOfElements == 1 ||              
               this.numberOfElements == 2]  
For input:   
 uniqueBoundedStack THIS = new uniqueBoundedStack ();  
 THIS.pop (); 

top:  
@post: [($result == -1) == (this.numberOfElements == 0)]  
For input:   
 uniqueBoundedStack THIS = new uniqueBoundedStack ();  
 THIS.push (-1);  
 int RETVAL = THIS.top ();

Figure 4.  Examples of operational violations using the 
precondition removal technique  

4.3. Iterations 

After the test selections are performed using the 
techniques in Section 4.1 and 4.2, all the violating tests 
can be further run together with the existing ones to infer 
the refined operational abstractions. The process 
described in Sections 4.1 and 4.2 is repeated until there 
are no operational violations reported for the operational 
abstractions generated from the previous iteration (or until 
the user-specified maximum number of iterations has been 
reached). 

Figure 5 shows operational violations during the first 
and second iterations on the JAX test suite. After the first 
iteration, a violating test is added to the existing test suite 
to weaken the “==” predicate to the “$implies”
predicate. After the second iteration, another violating test 
further removes this “$implies” predicate since it is 
inferred owing only to the deficiency of the tests.  

 (1st iteration) 
 isMember: 
 @post: [($result == true) == (this.numberOfElements == 1)]   
For input:   
 uniqueBoundedStack THIS = new uniqueBoundedStack ();  
 THIS.top ();  
 THIS.push (2);  
 boolean RETVAL = THIS.isMember (1); 

 (2nd iteration) 
  isMember: 
   @post:[($result == true) $implies (this.numberOfElements == 1)]  
For input:   
 uniqueBoundedStack THIS = new uniqueBoundedStack ();  
 THIS.push (2);  
 THIS.push (0);  
 boolean RETVAL = THIS.isMember (0);

Figure 5.  Operational violations during iterations
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4.4. Why it works 

The operational abstractions might not be consistent 
with the oracle specifications, which are the actual 
specifications for the unit. Assume that OA_PRE and 
OS_PRE are the domains constrained by the preconditions 
of the operational abstractions and the oracle 
specifications respectively. Legal domains are the ones 
that satisfy the preconditions of the oracle specifications, 
and illegal domains are the ones that do not satisfy these 
preconditions. The following are analyses of different 
potential relationships between OA_PRE and OS_PRE: 
1. If (OA_PRE ∩ OS_PRE) ⊂ OS_PRE, then no test 

inputs can be generated in the legal domain of 
(OS_PRE – OA_PRE); 

2. If (OA_PRE – OS_PRE) ≠ ∅, then test inputs can be 
generated in the illegal domain of (OA_PRE – 
OS_PRE); 

3. If OA_PRE=OS_PRE, then traditional specification-
based test generations are performed. 

The precondition removal technique addresses the first 
case by changing the situation to the second case. In order 
to test the robustness of a unit, it is useful to generate 
illegal test inputs to exercise it. If an illegal test input 
causes any operational violation, then the tool reports it, 
which catches the attentions of developers.   

If the execution of a legal test input generates a 
violation of a class invariant or postcondition, there are 
two possible causes. The first cause could be that the class 
invariant or postcondition in the operational abstractions 
is more restrictive than the one in the oracle 
specifications. Operational violations indicate that the 
violating test exercises a new feature of the program, 
which is not covered by the existing test suite. It is 
desirable to select this violating test to augment the 
existing test suite. The second cause could be that there is 
a fault revealed by the violating test. Running the existing 
test suite on the code exhibits the normal behavior 
reflected by the operational abstractions, whereas the 
violating test makes the code exhibit the abnormal 
behavior. 

5. Experiment 

This section presents the experiment that assesses our 
approach. First, the measurements in the experiment are 
described. Then, the experiment instrumentation is 
presented. Finally, the experimental results and threats to 
validity are described.  

The general questions we wish to answer include:  
1. Is the number of automatically generated tests 

large enough for developers to adopt unit test 
selection techniques? 

2. Is the number of tests selected by our approach 
small enough for developers to inspect affordably? 

3. Do the selected tests by our approach have a high 
probability of exposing faults? 

4. How does the operational violation approach 
compare with the residual branch coverage 
approach [18]?  

5.1. Measurements 

We cannot answer all of these questions with care, so 
we designed an experiment to give an initial sense of the 
general questions of efficacy of this approach.  In 
particular, we performed the following measurements to 
address these questions directly or indirectly: 

• Automatically generated test count in the absence 
of any operational abstraction (#AutoT): We 
measured the number of tests automatically generated 
by Jtest in the absence of any operational abstraction. 
This measurement is related to the first question.  

• Selected test count (#SelT): We measured the 
number of the tests selected by a test selection 
technique. This measurement is related to the second 
question. 

• Fault-revealing selected test count (#FRT): We 
measured the number of fault-revealing tests among 
the selected tests. We manually inspect the selected 
tests and the source code to determine the fault-
revealing tests. Note that multiple fault-revealing tests 
might expose the same fault in different ways. This 
measurement is related to the third question. 

The first measurement is performed for each subject 
program. The second and third measurements are 
performed for each combination of the basic/precondition 
removal techniques, subject programs, and number of 
iterations.  To help answer the fourth question, the second 
and third measurements are also performed for each 
subject program using the residual branch coverage 
approach. The residual branch coverage approach selects 
an automatically generated test, only if the test exercises a 
new branch, which is not covered by any existing test or 
any previously selected test.  

5.2. Experiment instrumentation 

5.2.1. Subject programs. Table 1 lists the subject 
programs that we used in the experiment. Each subject 
program is a Java class equipped with a manually written 
unit test suite. The first column shows the names of the 
subject programs. The second and third columns show the 
number of public methods, and the number of lines of 
executable code for each program respectively. The fourth 
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column shows the number of test cases in the test suite of 
each program. The last two columns present some 
measurement results that we shall describe in Section 5.3. 

Table 1. Subject programs used in the experiment 
Program #Public 

Method
#LOC # Tests  #AutoT  #ExT 

UB-Stack (JUnit) 11 47 8 96 1 

UB-Stack (JAX) 11 47 15 96 1 

RatPoly-1 13 161 24 223  1 

RatPoly-2 13 191 24 227  1 

RatPolyStack-1 13 48 11 128  4 

RatPolyStack-2 12 40 11 90   3 

BinaryHeap 10 31 _ 166 2 

BinarySearchTree 16 50 _ 147 0 

DisjSets 4 11 _ 24 4 

QueueAr 7 27 _ 120 1 

StackAr 8 20 _ 133 1 

StackLi 9 21 _ 99 0 

Among these subjects, UB-Stack(JUnit) and UB-
Stack(JAX) are the motivating example (Section 3) with 
the basic JUnit test suite and the JAX test suite (with one 
failing test removed), respectively [20]. RatPoly-1/ 
RatPoly-2 and RatPolyStack-1/RatPolyStack-2
are the student solutions to two assignments in a 
programming course at MIT. These selected solutions 
passed all the unit tests provided by instructors. The rest 
of the subjects come from a data structures textbook [23]. 
Daikon group members developed unit tests for 10 data 
structure classes in the textbook. Most of these unit tests 
use random input generation to fully exercise the 
programs. We applied our approach on these classes, and 
five classes – the last five at the end of Table 1 – have at 
least one operational violation. Since the test suite for 
these classes are not organized as a set of test cases, the  
fourth column does not apply. 

5.2.2. Tools. Daikon and Jtest are used in the experiment 
to implement our approach. We developed a set of Perl 
scripts to integrate these two tools. In Jtest’s configuration 
for the experiment, we set the length of calling sequence 
as two. We used Daikon’s default configuration for the 
generation of operational abstractions. Based on the 
Hansel tool [10], we developed a test selection tool based 
on residual branch coverage. 

In particular, we first run Jtest on the subject programs 
to collect the #AutoT measurement in the absence of any 
operational abstraction. Then for each subject program, 
we performed the experiment using the basic technique 
and repeated it until the third iteration was reached or 
until no operational violations were reported for the 
operational abstractions generated from the previous 

iteration. A similar procedure was performed on the 
precondition removal technique. At the end of each 
iteration, the  #SelT and #FRT measurements were 
collected. Finally, we used the tool based on residual 
branch coverage to collect the #SelT and #FRT
measurements on the tests automatically generated by 
Jtest in the absence of any operational abstraction. 

5.3. Experimental results 

The fifth column of Table 1 shows the #AutoT results. 
From the results, we observed that except for the 
especially small DisjSets program, nearly 100 or more 
tests are automatically generated. We also tried setting the 
length of the calling sequence to three, which caused Jtest 
to produce thousands of tests for the programs. This 
shows that test selection techniques are needed since it is 
not practical to manually check the outputs of all these 
automatically generated tests. 

The last column of Table 1 shows the number of the 
automatically generated tests that cause uncaught runtime 
exceptions. These tests should also be selected along with 
those tests selected by the operational violation approach 
or the residual branch coverage approach. 

Table 2 shows the number of selected tests (#SelT)
and fault-revealing selected tests (#FRT). The data in the 
“With Preconds” columns are for the basic technique 
(with preconditions). The data in the “W/O Preconds”
columns are for the precondition removal technique 
(without preconditions). For those data with the value of 
zero, their entries are left blank. The bottom row of Table 
2 shows the median percentage of #FRT among #SelT. In 
the calculation of the median percentage, entries with a 
#SelT value of zero are not included. 

The numbers of selected tests vary across different 
programs but on average their numbers are not large, so 
their outputs could be verified with affordable human 
effort. We observed that, in this experiment, the selected 
tests have a high probability of exposing fault. These 
fault-revealing tests are usually inputs that cause the 
program to exhibit abnormal behavior, such as illegal 
arguments or special object states. As one concrete 
example, the only selected test for the RatPoly-1 
program using the precondition removal technique makes 
the program infinitely loop until a Java out-of-memory 
error occurs. This test is not in the set of automatically 
generated tests by Jtest in the absence of any operational 
abstraction. This result is suggestive that our approach 
may have value. In addition, we observed that although 
those non-fault-revealing tests do not expose any fault, 
most of them represent some special class of inputs and 
thus may be valuable if selected for regression testing. 
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Table 2. The numbers of selected tests and fault-revealing selected tests using the basic technique and precondition 
removal technique for each program and each iteration 

 Iteration 1 Iteration 2 Iteration 3 

Programs With Preconds W/O Preconds With Preconds W/O Preconds With Preconds W/O Preconds 

 #SelT #FRT #SelT #FRT #SelT #FRT #SelT #FRT #SelT #FRT #SelT  #FRT 

 UBS (JUnit) 1  15 5 2 6 1 1

UBS (JAX) 3  25 9 4

RatPoly-1 2 2 1 1

RatPoly-2 1 1 1 1 1 1 

RatPolyStack-1   12 8 5 2 1

RatPolyStack-2 1  10 7 2

BinaryHeap 3 2 8 6 1 8 6 6

BinarySearchTree   3 3

DisjSets 1 1 2 2

QueueAr 6 1 11 1 4 1

StackAr 5 1 9 1 1 1

StackLi   2

(Median of #FRT/ #SelT) 20% 68% 0% 17% _ 0% 

Table 3. The numbers of selected tests and fault-
revealing selected tests using the residual branch 

coverage approach 
Program #Total- 

Branch 
#BR-

Branch 
#AR-

Branch  
#SelT #FRT 

UB-Stack (JUnit) 41 13 5 5 1 

UB-Stack (JAX) 41 1 1 0 0 

RatPoly-1 125 3 3 0 0 

RatPoly-2 139 9 9 0 0 

RatPolyStack-1 22 7 6 1 0 

RatPolyStack-2 16 0 0 0 0 

BinaryHeap 34 2 0 1 0 

BinarySearchTree 56 7 7 0 0 

DisjSets 10 0 0 0 0 

QueueAr 21 2 0 2 0 

StackAr 20 1 0 1 0 

StackLi 21 6 5 1 0 

(Median of 
#FRT/ #SelT)

-- 0% 

We observed that a violating test generated by Jtest in 
our approach is often not in the set of automatically 
generated tests by Jtest in the absence of any operational 
abstraction. This suggests that operational abstractions can 
effectively guide Jtest to generate tests to violate them. 

Based on the median percentage of #FRT among
#SelT, the precondition removal technique is overall 
more effective than the basic technique. By inspecting the 
violating tests, we found that sometimes the basic 
technique does guide Jtest to generate some new violating 
test inputs that are not generated in the precondition 

removal technique. We observed, in this experiment, that 
a couple of iterations are good enough in our approach. 
Jtest’s test generation and execution time dominates the 
running time of applying our approach. Most subjects 
took several minutes, but the BinaryHeap and 
RatPolyStack programs took on the order of 10 to 20 
minutes. We expect that the execution time can be 
optimized if future versions of Jtest can better support the 
resumption of test generation and execution after the 
violated operational abstractions are commented out.  

The last two columns of Table 3 shows the #SelT and 
#FRT measurements in the residual branch coverage 
approach. The second column of Table 3 shows the count 
of the total branches for each subject. The third column 
presents the count of residual branches after the execution 
of the existing tests. The fourth column presents the count 
of residual branches after the execution of both the 
existing tests and the selected tests. The bottom row of 
Table 3 shows the median percentage of #FRT among
#SelT.

We observed that the existing tests have already left no 
residual branches on two of the subjects. The tests 
automatically generated by Jtest can further reduce the 
count of residual branches on half of the subjects. The 
number of the selected tests or fault-revealing tests in the 
residual coverage approach is fewer than in the 
operational violation approach. We further measured the 
residual branch coverage after the execution of both the 
existing tests and the tests selected by the operational 
violation approach. The count of residual branches is 
usually larger than the one in the residual branch coverage 
approach. This indicates that the residual branch coverage 
approach is more effective in selecting tests to achieve 

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03) 
1527-1366/03 $ 17.00 © 2003 IEEE 



better branch coverage. On the other hand, although the 
programs contain faults that are exposed by the tests 
selected by the operational violation approach, the tests 
selected by the residual branch coverage approach cannot 
expose most of them. This suggests that combining the 
residual branch coverage approach and the operational 
violation approach may provide a better solution for unit 
test selection.  

5.4. Threats to validity 

The threats to validity primarily include the degree to 
which the subject programs, faults, and test cases are 
representative of true practice. The subjects in the 
experiment are small, although the faults in them are real, 
some of which were not detected before. These threats 
could be reduced by more experiments on wider types of 
subjects. The threats to validity also include 
instrumentation effects that can bias our results. Faults in 
our Perl scripts, Daikon, or Jtest might cause such effects. 
To reduce these threats, we manually inspected the results 
for each program subject. 

6. Related Work 

Harder et al. present a specification-based technique 
without requiring a priori specification [12]. Their 
operational difference technique starts with an operational 
abstraction generated by an existing test suite. Then it 
generates a new operational abstraction from the test suite 
augmented by a candidate test case. If the new operational 
abstraction differs from the previous one, it adds the 
candidate test case to the suite. This process is repeated 
until some number n of candidate cases have been 
consecutively considered and rejected. Both operational 
difference and our approach use the operational 
abstractions generated from test executions. Our approach 
exploits operational abstractions’ guidance to test 
generation, whereas operational difference operates on a 
fixed set of given tests. 

The DIDUCE tool can continuously check a program’s 
behavior against the incrementally inferred invariants 
during the run(s), and produce a report of all invariant 
violations detected along the way [11]. This can help 
detect bugs and track down the root causes. A usage 
model of DIDUCE is proposed, which is similar to the 
unit test selection problem in this work. Both DIDUCE 
and our approach make use of violations of the inferred 
invariants. The inferred invariants used by our approach 
are produced by Daikon at method entry and exit points, 
whereas DIDUCE infers a limited set of simpler invariants 
from procedure call sites and object/static variable 
read/write sites. Also DIDUCE does not investigate the 
effects of operational abstractions on test generation.  

Failed static verification attempts are used to indicate 
the deficiencies in the unit tests [17]. The unverifiable 
invariants indicate unintended properties and developers 
can get hints on how to improve the tests. Our approach 
reports not only the violated invariants but also the 
executable counterexamples for them. In addition, the 
over-restrictiveness of preconditions makes static 
verification of inferred invariants less effective. Even if a 
static verifier could confirm an inferred postcondition 
given some over-restrictive preconditions, it is hard to tell 
whether it is generalizable to the actual preconditions. In 
our approach, the precondition removal technique tackles 
this problem. 

When specifications are provided for a unit a priori,
specification coverage criteria are used to suggest a 
candidate set of test cases that exercise new aspects of the 
specification [6]. Like the preceding related work based 
on operational abstractions, our approach does not require 
a specification a priori.

In white-box testing (such as the residual structural 
coverage [18]), developers can select and inspect the tests 
that provide new structural coverage unachieved by the 
existing test suite. Test case prioritization techniques, such 
as additional structural coverage techniques, can produce 
a list of sorted tests for regression testing [19][21]. 
Clustering and sampling the execution profiles can also be 
used to select a list of tests for inspection and selection 
[7]. Although in this work, we only integrated Daikon and 
Jtest to implement our approach, some other specification-
based unit test generation tools can also be used to 
implement the approach [4][9]. Other kinds of operational 
abstraction generation, such as sequencing constraints or 
protocol inferences [1][22], can be used in this approach 
as well. In future work, we plan to experiment other 
implementations of the approach. 

7. Conclusion 

Selecting automatically generated tests to check 
correctness and augment the existing unit test suite is an 
important step in unit testing. Inferred operational 
abstractions act as a summary of the existing test 
execution history. A new test that violates an operational 
abstraction is a good candidate for inspection and 
selection, since it exercises a new program feature that is 
not covered by the existing tests. The violating test also 
has a high probability of exposing faults in the code if 
there are any. In addition, operational abstractions can 
guide test generation tools to produce better test inputs.  

Instead of considering the test augmentation as a one-
time phase, it should be considered as a frequent activity 
in software evolution, perhaps as frequent as regression 
unit testing. When a program is changed, the operational 
abstractions generated from the same unit test suite might 
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change as well, presenting opportunities for possible 
operational violations. Tool-assisted unit test 
augmentation may be a practical means of evolving unit 
tests and assuring better unit quality.  

The unit test selection tool based on operational 
violations is available for download from 

http://www.cs.washington.edu/homes/taoxie/jov/. 
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