
Tool-Assisted Unit Test Selection Based on Operational Violations

Tao Xie David Notkin
Department of Computer Science & Engineering, University of Washington

{taoxie, notkin}@cs.washington.edu

Abstract

Unit testing, a common step in software development,
presents a challenge. When produced manually, unit test
suites are often insufficient to identify defects. The main
alternative is to use one of a variety of automatic unit test
generation tools: these are able to produce and execute a
large number of test inputs that extensively exercise the
unit under test. However, without a priori specifications,
developers need to manually verify the outputs of these
test executions, which is generally impractical. To reduce
this cost, unit test selection techniques may be used to
help select a subset of automatically generated test inputs.
Then developers can verify their outputs, equip them with
test oracles, and put them into the existing test suite. In
this paper, we present the operational violation approach
for unit test selection, a black-box approach without
requiring a priori specifications. The approach
dynamically generates operational abstractions from
executions of the existing unit test suite. Any
automatically generated tests violating the operational
abstractions are identified as candidates for selection. In
addition, these operational abstractions can guide test
generation tools to produce better tests. To experiment
with this approach, we integrated the use of Daikon (a
dynamic invariant detection tool) and Jtest (a commercial
Java unit testing tool). An experiment is conducted to
assess this approach.

1. Introduction

The “test first” principle, as advocated by the extreme
programming development process [2][3], requires unit
tests to be constructed and maintained before, during, and
after the source code is written. A unit test suite comprises
a set of test cases. A test case consists of a test input and a
test oracle, which is used to check the correctness of the
test result. Developers usually need to manually generate
the test cases based on written or, more often, unwritten
requirements. In practice, developers tend to write a
relatively small number of unit tests, which in turn tend to
be useful but insufficient. Some commercial tools for Java
unit testing, such as ParaSoft’s Jtest [14], attempt to fill
the gaps not covered by any manually generated unit tests.
These tools can automatically generate a large number of

unit test inputs to exercise the program. However, no test
oracles are produced for these automatically generated test
inputs unless developers do some additional work: in
particular, they need to write some formal specifications
or runtime assertions [5], which seems to be uncommon in
practice. Without a priori specifications, manually
verifying the outputs of such a large number of test inputs
requires intensive labor, which is impractical. Unit test
selection is a means to address this problem by selecting
the most valuable subset of the automatically generated
test inputs. Then developers can inspect the executions of
this much smaller set of test inputs to check the
correctness and to add oracles.

Operational violation is a black-box test selection
approach that does not require a priori specifications. An
operational abstraction describes the actual behavior
during program execution of an existing unit test suite
[12]. If the execution of an automatically generated test
input violates an operational abstraction, this test input is
chosen as one of the test selection candidates. The key
idea behind this approach is that the violating test
exercises a new feature of program behavior that is not
covered by the existing test suite. We have implemented
this approach by integrating Daikon [8] (a dynamic
invariant detection tool) and Jtest [14] (a commercial Java
unit testing tool).

The next section presents background information on
the unit test selection problem and two techniques that are
integrated in our approach: operational abstraction
generation and specification-based unit test generation.
Section 3 describes the motivating example that is used to
illustrate our approach. Section 4 presents our operational
violation approach. Section 5 describes the experiment
that is conducted to assess the approach. Section 6
discusses related work, and then Section 7 concludes.

2. Background

2.1. Unit test selection

In this work, the objective of unit test selection is to
select the most valuable subset of the automatically
generated test inputs, allowing a developer both to
manually verify their test results and to augment the
existing unit tests. There are two closely related goals. For

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

fault detection, the most valuable test inputs are those that
have the highest probability of exposing faults and
verifying their test results can improve the probability of
detecting faults. For test augmentation, the most valuable
test inputs are those that complement the existing tests to
together achieve a better testing criterion.

More formally, the objective of unit test selection in
this context is to answer the following question as
inexpensively as possible:

Given a program unit u, a set S of existing tests for u,
and a test t from a set S’ of unselected tests for u, does the
execution of t exercise at least one new feature that is not
exercised by the execution of any test in S?

If the answer is yes, t is removed from S’ and put into
S. Otherwise, t is removed from S’ and discarded. In this
work, the initial set S is the existing unit tests, which are
usually manually written. The set S’ of unselected tests is
automatically generated tests. The term feature is
intentionally vague, since it can be defined in different
ways. For fault detection, a new feature could be a fault-
revealing behavior that does not occur during executions
of the existing tests. In white-box test augmentation, a
new feature could be a program behavior exhibited by
executing a new structural entity, such as statement,
branch, or def-use pair. In other words, the white-box test
augmentation is based on residual structural coverage
[18]. In black-box test augmentation, a feature could be a
program behavior exhibited by covering a new predicate
in a priori specifications [6].

Since manual effort is required to verify the results of
selected test inputs, it is important to select a relatively
small number of tests. This is different from the problems
that traditional test selection techniques address [6][12].
In those problems, there are test oracles for unselected test
inputs. Therefore, selecting a relatively large number of
tests during selection is usually acceptable for those
problems, but is not practical in this work.

2.2. Operational abstraction generation

An operational abstraction is a collection of logical
statements that abstract the program’s runtime behavior
[12]. It is syntactically identical to a formal specification.
In contrast to a formal specification, which expresses
desired behavior, an operational abstraction expresses
observed behavior. Daikon [8], a dynamic invariant
detection tool, is used to infer operational abstractions
from program executions of test suites. Like other
dynamic analysis techniques, the quality of the test suite
affects the quality of the analysis. Deficient test suites or a
subset of sufficient test suites may not help to infer a
generalizable program property. Nonetheless, operational
abstractions inferred from the executed test suites
constitute a summary of the test execution history.

2.3. Specification-based unit test generation

Given a formal specification, specification-based unit
test generation tools can automatically generate test inputs
for a unit. A specification for a class generally consists of
preconditions and postconditions for methods, in addition
to class invariants for the class [16]. Preconditions specify
conditions that must hold before a method can be
executed. Postconditions specify conditions that must hold
after a method is completed. Class invariants specify
conditions that the objects of the class should always
satisfy. They are checked for every non-static, non-private
method entry and exit, and for every non-private
constructor exit. Class invariants can be treated as
preconditions and postconditions for these methods.

 Filtering the test input space based on preconditions
has been used to effectively automate unit test generation
[4]. Automatically generating test inputs to exercise some
particular postconditions or assertions has also been
attempted [9]. A commercial Java unit testing tool,
ParaSoft’s Jtest, can automatically generate unit tests for a
Java class [14]. When no specifications are provided, Jtest
can automatically generate test inputs to perform white-
box testing. When specifications are provided with the
class, Jtest can make use of them to perform black-box
testing. If the code has preconditions, Jtest tries to find
inputs that satisfy all of them. If the code has
postconditions, Jtest creates test inputs that verify whether
the code satisfies these conditions. If the code has class
invariants, Jtest creates test inputs that try to make them
fail. By default, Jtest tests each method by generating
arguments for them and calling them independently. In
other words, Jtest basically tries the calling sequences of
length one by default. Tool users can set the length of
calling sequences in the range of one to three. If a calling
sequence of length three is specified, Jtest first tries all
calling sequences of length one followed by all those of
length two and three sequentially.

3. Motivating Example

As a motivating example, we use a Java
implementation of a bounded stack that stores unique
elements of integer type. Figure 1 shows the class
including the implementations of several methods that we
shall refer to in the next section. Stotts et al. coded this
Java implementation to experiment their algebraic-
specification-based method for systematically creating
unit tests [20]; they provide a web link to the full source
code and associated test suites. They have defined two
unit test suites for this class: a basic JUnit [15] test suite
(8 tests), in which one test method is generated for a
public method in the target class; and a JAX test suite (16
tests), in which one test method is generated for an axiom

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

in the abstract data type specification. The basic JUnit test
suite does not expose any fault but one of the JAX test
cases exposes one fault (handling a pop operation on an
empty stack incorrectly). In practice, developers usually
fix the faults exposed by existing unit tests before they
augment the unit test suite. In this example and for our
analysis of our approach, instead of fixing the exposed
fault, we remove this fault-revealing test case from the
JAX test suite to make all the existing test cases pass.

public class uniqueBoundedStack {
 /** @invariant this.max==this.elems.length */
 private int[] elems;
 private int numberOfElements;
 private int max;

 public uniqueBoundedStack() {
 numberOfElements = 0;
 max = 2;
 elems = new int[max];
 }

 /** @pre 0<= this.numberOfElements <= this.max */
 /** @post $result==$pre(int,this.numberOfElements)*/
 public int getNumberOfElements() {
 return numberOfElements;
 }

 public void pop(){
 numberOfElements--;
 }

 public int top(){
 if (numberOfElements < 1) {
 System.out.println("Empty Stack");
 return -1;
 } else {
 return elems[numberOfElements-1];
 }
 }

 public boolean isMember(int k) {
 for(int index=0; index<numberOfElements; index++)
 if (k==elems[index])
 return true;
 return false;
 }

 public void push(int k) {…}
 public boolean isEmpty() {…}
 public boolean isFull() {…}
 public int maxSize() {…}
 public boolean equals(uniqueBoundedStack s) {…}
 public int[] getArray() {…}
};

Figure 1. The uniqueBoundedStack program

The code in Figure 1 is annotated with some Design-
by-Contract (DbC) comments [13], the approach used in
this example to define the class specification.
@invariant is used to denote class invariants. @pre and
@post are used to denote the preconditions and
postconditions, respectively. In the postconditions, the
$pre keyword is used to refer to the value of an
expression immediately before calling the method. The
syntax to use it is $pre(ExpressionType,

Expression). The $result keyword is used to
represent the return value of the method.

4. Operational Violation Approach

This section describes the operational violation
approach. Section 4.1 explains the basic technique of the
approach. Section 4.2 presents the precondition removal
technique to complement the basic technique. Section 4.3
describes the iterative process of applying these
techniques. Section 4.4 illustrates the rationales behind
this approach.

4.1. Basic technique

 Figure 2. An overview of the basic technique

In the basic technique (Figure 2), operational
abstractions are inferred from program executions of the
existing unit test suite using Daikon. The Daikon toolset is
extended to insert the operational abstractions into the
source code as DbC comments. The resulting code is fed
to Jtest, which automatically generates and executes tests.
The two symptoms of an operational violation are that an
operational abstraction is evaluated to be false, or that an
exception is thrown while evaluating an operational
abstraction. When a certain number of operational
violations have occurred before Jtest exhausts its testing
repository, it stops generating test inputs and reports
operational violations. All the reported operational
violations, including the violating test inputs, are exported
to a text file. Given the exported text file, a Perl script was
developed to automatically comment out the violated
operational abstractions in the source code. At the same
time, the operational violations are collected. Then Jtest is
invoked again, using a script, given the program with
reduced operational abstractions. The preceding
procedure is repeated automatically until no operational
violations are found.

Given the collected operational violations, a Perl script
was developed to select the first encountered test for each
violated operational abstraction. Then the selected
violating tests are sorted based on the number of their
violated operational abstractions. The tests that violate
more operational abstractions are put before those that
violate fewer ones. The script produces a JUnit [15] test
class, which contains the sorted list of violating test inputs

Operational
abstractions

Jtest The existing
test suite

Run
Data trace Detect

invariants
Insert as

DbC com m ents

Run &
Check

Violating
tests

Annotated

program

Autom atically
generated
test inputs

Daikon

Violated
operational
abstractions

Comment
 out

Selected
tests Select

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

as well as their violated operational abstractions. An
integration tool was developed to fully automate the
preceding steps, including invoking Daikon and Jtest, and
postprocessing the text file. After running the integration
tool, developers can then inspect the resulting sorted tests
to verify the correctness of their executions. Optionally,
developers can add assertions for the test inputs as test
oracles for regression testing.

One example of an operational violation is shown in
Figure 3. The example, which indicates a deficiency of the
JAX test suite, shows method isMember’s two violated
postconditions followed by the violating test. This
violating test should be added to the existing test suite.

isMember:
@post: [($pre(int , k) == 3) == ($result == true)]
@post: [($pre(int , k) == 3) == (this.numberOfElements == 1)]
For input:
 uniqueBoundedStack THIS = new uniqueBoundedStack ();
 boolean RETVAL = THIS.isMember (3);

Figure 3. An example of operational violations using
the basic technique

4.2. Precondition removal technique

In the basic technique, when the existing test suite is
deficient, the inferred preconditions might be so
restrictive that Jtest filters out those legal test inputs
during test generation and execution. However, we need
to exercise the unit under more circumstances than what is
constrained by the inferred preconditions. To do this,
before the annotated code is fed to Jtest, we remove all
precondition comments and we thus exercise the unit
under a broader variety of test inputs. Indeed, removing
preconditions can make test generation tools less guided,
especially those tools that generate tests mainly based on
preconditions [4]. The basic technique and this
precondition removal technique are used together to
complement each other.

Figure 4 shows two examples of operational violations
and the use of this technique. The example in the upper
part indicates a deficiency of the basic JUnit test suite, and
the violating test exposes the fault detected by the original
JAX test suite. The example in the lower part shows a
deficiency of the JAX test suite that exposes another new
fault, one not reported in the original experiment [20]. If
this stack implementation can accommodate negative
integer elements, this operational violation shows that
using –1 as an exception indicator makes the top method
work incorrectly when the integer –1 is put on top of the
stack. This is a typical value-sensitive fault and even a
full-path-coverage test suite cannot guarantee to expose
this fault. This violation is not reported by the basic
technique, since there are several inferred preconditions

for method top to prevent the element –1 from being on
top of the stack, such as

{ for (int i = 0 ; i <= this.elems.length-1; i++)
 $assert ((this.elems[i] >= 0)); }

 where $assert is used to denote an assertion statement.

pop:
@post: [(this.elems[this.numberOfElements] ==
 this.elems[$pre(int, this.numberOfElements)-1])]
@post: [this.numberOfElements == 0 ||

this.numberOfElements == 1]
@invariant: [this.numberOfElements == 0 ||
 this.numberOfElements == 1 ||
 this.numberOfElements == 2]
For input:
 uniqueBoundedStack THIS = new uniqueBoundedStack ();
 THIS.pop ();

top:
@post: [($result == -1) == (this.numberOfElements == 0)]
For input:
 uniqueBoundedStack THIS = new uniqueBoundedStack ();
 THIS.push (-1);
 int RETVAL = THIS.top ();

Figure 4. Examples of operational violations using the
precondition removal technique

4.3. Iterations

After the test selections are performed using the
techniques in Section 4.1 and 4.2, all the violating tests
can be further run together with the existing ones to infer
the refined operational abstractions. The process
described in Sections 4.1 and 4.2 is repeated until there
are no operational violations reported for the operational
abstractions generated from the previous iteration (or until
the user-specified maximum number of iterations has been
reached).

Figure 5 shows operational violations during the first
and second iterations on the JAX test suite. After the first
iteration, a violating test is added to the existing test suite
to weaken the “==” predicate to the “$implies”
predicate. After the second iteration, another violating test
further removes this “$implies” predicate since it is
inferred owing only to the deficiency of the tests.

 (1st iteration)
 isMember:
 @post: [($result == true) == (this.numberOfElements == 1)]
For input:
 uniqueBoundedStack THIS = new uniqueBoundedStack ();
 THIS.top ();
 THIS.push (2);
 boolean RETVAL = THIS.isMember (1);

 (2nd iteration)
 isMember:
 @post:[($result == true) $implies (this.numberOfElements == 1)]
For input:
 uniqueBoundedStack THIS = new uniqueBoundedStack ();
 THIS.push (2);
 THIS.push (0);
 boolean RETVAL = THIS.isMember (0);

Figure 5. Operational violations during iterations

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

4.4. Why it works

The operational abstractions might not be consistent
with the oracle specifications, which are the actual
specifications for the unit. Assume that OA_PRE and
OS_PRE are the domains constrained by the preconditions
of the operational abstractions and the oracle
specifications respectively. Legal domains are the ones
that satisfy the preconditions of the oracle specifications,
and illegal domains are the ones that do not satisfy these
preconditions. The following are analyses of different
potential relationships between OA_PRE and OS_PRE:
1. If (OA_PRE ∩ OS_PRE) ⊂ OS_PRE, then no test

inputs can be generated in the legal domain of
(OS_PRE – OA_PRE);

2. If (OA_PRE – OS_PRE) ≠ ∅, then test inputs can be
generated in the illegal domain of (OA_PRE –
OS_PRE);

3. If OA_PRE=OS_PRE, then traditional specification-
based test generations are performed.

The precondition removal technique addresses the first
case by changing the situation to the second case. In order
to test the robustness of a unit, it is useful to generate
illegal test inputs to exercise it. If an illegal test input
causes any operational violation, then the tool reports it,
which catches the attentions of developers.

If the execution of a legal test input generates a
violation of a class invariant or postcondition, there are
two possible causes. The first cause could be that the class
invariant or postcondition in the operational abstractions
is more restrictive than the one in the oracle
specifications. Operational violations indicate that the
violating test exercises a new feature of the program,
which is not covered by the existing test suite. It is
desirable to select this violating test to augment the
existing test suite. The second cause could be that there is
a fault revealed by the violating test. Running the existing
test suite on the code exhibits the normal behavior
reflected by the operational abstractions, whereas the
violating test makes the code exhibit the abnormal
behavior.

5. Experiment

This section presents the experiment that assesses our
approach. First, the measurements in the experiment are
described. Then, the experiment instrumentation is
presented. Finally, the experimental results and threats to
validity are described.

The general questions we wish to answer include:
1. Is the number of automatically generated tests

large enough for developers to adopt unit test
selection techniques?

2. Is the number of tests selected by our approach
small enough for developers to inspect affordably?

3. Do the selected tests by our approach have a high
probability of exposing faults?

4. How does the operational violation approach
compare with the residual branch coverage
approach [18]?

5.1. Measurements

We cannot answer all of these questions with care, so
we designed an experiment to give an initial sense of the
general questions of efficacy of this approach. In
particular, we performed the following measurements to
address these questions directly or indirectly:

• Automatically generated test count in the absence
of any operational abstraction (#AutoT): We
measured the number of tests automatically generated
by Jtest in the absence of any operational abstraction.
This measurement is related to the first question.

• Selected test count (#SelT): We measured the
number of the tests selected by a test selection
technique. This measurement is related to the second
question.

• Fault-revealing selected test count (#FRT): We
measured the number of fault-revealing tests among
the selected tests. We manually inspect the selected
tests and the source code to determine the fault-
revealing tests. Note that multiple fault-revealing tests
might expose the same fault in different ways. This
measurement is related to the third question.

The first measurement is performed for each subject
program. The second and third measurements are
performed for each combination of the basic/precondition
removal techniques, subject programs, and number of
iterations. To help answer the fourth question, the second
and third measurements are also performed for each
subject program using the residual branch coverage
approach. The residual branch coverage approach selects
an automatically generated test, only if the test exercises a
new branch, which is not covered by any existing test or
any previously selected test.

5.2. Experiment instrumentation

5.2.1. Subject programs. Table 1 lists the subject
programs that we used in the experiment. Each subject
program is a Java class equipped with a manually written
unit test suite. The first column shows the names of the
subject programs. The second and third columns show the
number of public methods, and the number of lines of
executable code for each program respectively. The fourth

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

column shows the number of test cases in the test suite of
each program. The last two columns present some
measurement results that we shall describe in Section 5.3.

Table 1. Subject programs used in the experiment
Program #Public

Method
#LOC # Tests #AutoT #ExT

UB-Stack (JUnit) 11 47 8 96 1

UB-Stack (JAX) 11 47 15 96 1

RatPoly-1 13 161 24 223 1

RatPoly-2 13 191 24 227 1

RatPolyStack-1 13 48 11 128 4

RatPolyStack-2 12 40 11 90 3

BinaryHeap 10 31 _ 166 2

BinarySearchTree 16 50 _ 147 0

DisjSets 4 11 _ 24 4

QueueAr 7 27 _ 120 1

StackAr 8 20 _ 133 1

StackLi 9 21 _ 99 0

Among these subjects, UB-Stack(JUnit) and UB-
Stack(JAX) are the motivating example (Section 3) with
the basic JUnit test suite and the JAX test suite (with one
failing test removed), respectively [20]. RatPoly-1/
RatPoly-2 and RatPolyStack-1/RatPolyStack-2
are the student solutions to two assignments in a
programming course at MIT. These selected solutions
passed all the unit tests provided by instructors. The rest
of the subjects come from a data structures textbook [23].
Daikon group members developed unit tests for 10 data
structure classes in the textbook. Most of these unit tests
use random input generation to fully exercise the
programs. We applied our approach on these classes, and
five classes – the last five at the end of Table 1 – have at
least one operational violation. Since the test suite for
these classes are not organized as a set of test cases, the
fourth column does not apply.

5.2.2. Tools. Daikon and Jtest are used in the experiment
to implement our approach. We developed a set of Perl
scripts to integrate these two tools. In Jtest’s configuration
for the experiment, we set the length of calling sequence
as two. We used Daikon’s default configuration for the
generation of operational abstractions. Based on the
Hansel tool [10], we developed a test selection tool based
on residual branch coverage.

In particular, we first run Jtest on the subject programs
to collect the #AutoT measurement in the absence of any
operational abstraction. Then for each subject program,
we performed the experiment using the basic technique
and repeated it until the third iteration was reached or
until no operational violations were reported for the
operational abstractions generated from the previous

iteration. A similar procedure was performed on the
precondition removal technique. At the end of each
iteration, the #SelT and #FRT measurements were
collected. Finally, we used the tool based on residual
branch coverage to collect the #SelT and #FRT
measurements on the tests automatically generated by
Jtest in the absence of any operational abstraction.

5.3. Experimental results

The fifth column of Table 1 shows the #AutoT results.
From the results, we observed that except for the
especially small DisjSets program, nearly 100 or more
tests are automatically generated. We also tried setting the
length of the calling sequence to three, which caused Jtest
to produce thousands of tests for the programs. This
shows that test selection techniques are needed since it is
not practical to manually check the outputs of all these
automatically generated tests.

The last column of Table 1 shows the number of the
automatically generated tests that cause uncaught runtime
exceptions. These tests should also be selected along with
those tests selected by the operational violation approach
or the residual branch coverage approach.

Table 2 shows the number of selected tests (#SelT)
and fault-revealing selected tests (#FRT). The data in the
“With Preconds” columns are for the basic technique
(with preconditions). The data in the “W/O Preconds”
columns are for the precondition removal technique
(without preconditions). For those data with the value of
zero, their entries are left blank. The bottom row of Table
2 shows the median percentage of #FRT among #SelT. In
the calculation of the median percentage, entries with a
#SelT value of zero are not included.

The numbers of selected tests vary across different
programs but on average their numbers are not large, so
their outputs could be verified with affordable human
effort. We observed that, in this experiment, the selected
tests have a high probability of exposing fault. These
fault-revealing tests are usually inputs that cause the
program to exhibit abnormal behavior, such as illegal
arguments or special object states. As one concrete
example, the only selected test for the RatPoly-1
program using the precondition removal technique makes
the program infinitely loop until a Java out-of-memory
error occurs. This test is not in the set of automatically
generated tests by Jtest in the absence of any operational
abstraction. This result is suggestive that our approach
may have value. In addition, we observed that although
those non-fault-revealing tests do not expose any fault,
most of them represent some special class of inputs and
thus may be valuable if selected for regression testing.

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

Table 2. The numbers of selected tests and fault-revealing selected tests using the basic technique and precondition
removal technique for each program and each iteration

 Iteration 1 Iteration 2 Iteration 3

Programs With Preconds W/O Preconds With Preconds W/O Preconds With Preconds W/O Preconds

 #SelT #FRT #SelT #FRT #SelT #FRT #SelT #FRT #SelT #FRT #SelT #FRT

 UBS (JUnit) 1 15 5 2 6 1 1

UBS (JAX) 3 25 9 4

RatPoly-1 2 2 1 1

RatPoly-2 1 1 1 1 1 1

RatPolyStack-1 12 8 5 2 1

RatPolyStack-2 1 10 7 2

BinaryHeap 3 2 8 6 1 8 6 6

BinarySearchTree 3 3

DisjSets 1 1 2 2

QueueAr 6 1 11 1 4 1

StackAr 5 1 9 1 1 1

StackLi 2

(Median of #FRT/ #SelT) 20% 68% 0% 17% _ 0%

Table 3. The numbers of selected tests and fault-
revealing selected tests using the residual branch

coverage approach
Program #Total-

Branch
#BR-

Branch
#AR-

Branch
#SelT #FRT

UB-Stack (JUnit) 41 13 5 5 1

UB-Stack (JAX) 41 1 1 0 0

RatPoly-1 125 3 3 0 0

RatPoly-2 139 9 9 0 0

RatPolyStack-1 22 7 6 1 0

RatPolyStack-2 16 0 0 0 0

BinaryHeap 34 2 0 1 0

BinarySearchTree 56 7 7 0 0

DisjSets 10 0 0 0 0

QueueAr 21 2 0 2 0

StackAr 20 1 0 1 0

StackLi 21 6 5 1 0

(Median of
#FRT/ #SelT)

-- 0%

We observed that a violating test generated by Jtest in
our approach is often not in the set of automatically
generated tests by Jtest in the absence of any operational
abstraction. This suggests that operational abstractions can
effectively guide Jtest to generate tests to violate them.

Based on the median percentage of #FRT among
#SelT, the precondition removal technique is overall
more effective than the basic technique. By inspecting the
violating tests, we found that sometimes the basic
technique does guide Jtest to generate some new violating
test inputs that are not generated in the precondition

removal technique. We observed, in this experiment, that
a couple of iterations are good enough in our approach.
Jtest’s test generation and execution time dominates the
running time of applying our approach. Most subjects
took several minutes, but the BinaryHeap and
RatPolyStack programs took on the order of 10 to 20
minutes. We expect that the execution time can be
optimized if future versions of Jtest can better support the
resumption of test generation and execution after the
violated operational abstractions are commented out.

The last two columns of Table 3 shows the #SelT and
#FRT measurements in the residual branch coverage
approach. The second column of Table 3 shows the count
of the total branches for each subject. The third column
presents the count of residual branches after the execution
of the existing tests. The fourth column presents the count
of residual branches after the execution of both the
existing tests and the selected tests. The bottom row of
Table 3 shows the median percentage of #FRT among
#SelT.

We observed that the existing tests have already left no
residual branches on two of the subjects. The tests
automatically generated by Jtest can further reduce the
count of residual branches on half of the subjects. The
number of the selected tests or fault-revealing tests in the
residual coverage approach is fewer than in the
operational violation approach. We further measured the
residual branch coverage after the execution of both the
existing tests and the tests selected by the operational
violation approach. The count of residual branches is
usually larger than the one in the residual branch coverage
approach. This indicates that the residual branch coverage
approach is more effective in selecting tests to achieve

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

better branch coverage. On the other hand, although the
programs contain faults that are exposed by the tests
selected by the operational violation approach, the tests
selected by the residual branch coverage approach cannot
expose most of them. This suggests that combining the
residual branch coverage approach and the operational
violation approach may provide a better solution for unit
test selection.

5.4. Threats to validity

The threats to validity primarily include the degree to
which the subject programs, faults, and test cases are
representative of true practice. The subjects in the
experiment are small, although the faults in them are real,
some of which were not detected before. These threats
could be reduced by more experiments on wider types of
subjects. The threats to validity also include
instrumentation effects that can bias our results. Faults in
our Perl scripts, Daikon, or Jtest might cause such effects.
To reduce these threats, we manually inspected the results
for each program subject.

6. Related Work

Harder et al. present a specification-based technique
without requiring a priori specification [12]. Their
operational difference technique starts with an operational
abstraction generated by an existing test suite. Then it
generates a new operational abstraction from the test suite
augmented by a candidate test case. If the new operational
abstraction differs from the previous one, it adds the
candidate test case to the suite. This process is repeated
until some number n of candidate cases have been
consecutively considered and rejected. Both operational
difference and our approach use the operational
abstractions generated from test executions. Our approach
exploits operational abstractions’ guidance to test
generation, whereas operational difference operates on a
fixed set of given tests.

The DIDUCE tool can continuously check a program’s
behavior against the incrementally inferred invariants
during the run(s), and produce a report of all invariant
violations detected along the way [11]. This can help
detect bugs and track down the root causes. A usage
model of DIDUCE is proposed, which is similar to the
unit test selection problem in this work. Both DIDUCE
and our approach make use of violations of the inferred
invariants. The inferred invariants used by our approach
are produced by Daikon at method entry and exit points,
whereas DIDUCE infers a limited set of simpler invariants
from procedure call sites and object/static variable
read/write sites. Also DIDUCE does not investigate the
effects of operational abstractions on test generation.

Failed static verification attempts are used to indicate
the deficiencies in the unit tests [17]. The unverifiable
invariants indicate unintended properties and developers
can get hints on how to improve the tests. Our approach
reports not only the violated invariants but also the
executable counterexamples for them. In addition, the
over-restrictiveness of preconditions makes static
verification of inferred invariants less effective. Even if a
static verifier could confirm an inferred postcondition
given some over-restrictive preconditions, it is hard to tell
whether it is generalizable to the actual preconditions. In
our approach, the precondition removal technique tackles
this problem.

When specifications are provided for a unit a priori,
specification coverage criteria are used to suggest a
candidate set of test cases that exercise new aspects of the
specification [6]. Like the preceding related work based
on operational abstractions, our approach does not require
a specification a priori.

In white-box testing (such as the residual structural
coverage [18]), developers can select and inspect the tests
that provide new structural coverage unachieved by the
existing test suite. Test case prioritization techniques, such
as additional structural coverage techniques, can produce
a list of sorted tests for regression testing [19][21].
Clustering and sampling the execution profiles can also be
used to select a list of tests for inspection and selection
[7]. Although in this work, we only integrated Daikon and
Jtest to implement our approach, some other specification-
based unit test generation tools can also be used to
implement the approach [4][9]. Other kinds of operational
abstraction generation, such as sequencing constraints or
protocol inferences [1][22], can be used in this approach
as well. In future work, we plan to experiment other
implementations of the approach.

7. Conclusion

Selecting automatically generated tests to check
correctness and augment the existing unit test suite is an
important step in unit testing. Inferred operational
abstractions act as a summary of the existing test
execution history. A new test that violates an operational
abstraction is a good candidate for inspection and
selection, since it exercises a new program feature that is
not covered by the existing tests. The violating test also
has a high probability of exposing faults in the code if
there are any. In addition, operational abstractions can
guide test generation tools to produce better test inputs.

Instead of considering the test augmentation as a one-
time phase, it should be considered as a frequent activity
in software evolution, perhaps as frequent as regression
unit testing. When a program is changed, the operational
abstractions generated from the same unit test suite might

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

change as well, presenting opportunities for possible
operational violations. Tool-assisted unit test
augmentation may be a practical means of evolving unit
tests and assuring better unit quality.

The unit test selection tool based on operational
violations is available for download from

http://www.cs.washington.edu/homes/taoxie/jov/.

8. Acknowledgment

We thank Michael Ernst and the Daikon project
members at MIT for their assistance in our use of the
Daikon tool and preparation of the experimental subjects.
We also thank ParaSoft Inc. for their sponsorship on the
Jtest tool. This work was supported in part by the National
Science Foundation under grant ITR 0086003. We
acknowledge support through the High Dependability
Computing Program from NASA Ames cooperative
agreement NCC-2-1298.

9. References

[1] G. Ammons, R. Bodik, and J. Larus, “Mining
Specifications”, Proceedings of Principles of Programming
Languages (POPL), Portland, Oregon, January 2002, pp.
16-18.

[2] K. Beck, Extreme programming explained, Addison-
Wesley, 2000.

[3] Kent Beck and Erich Gamma, “Test infected: Programmers
love writing tests”, Java Report, 3(7), July 1998.

[4] C. Boyapati, S. Khurshid, and D. Marinov, “Korat:
Automated testing based on Java predicates”, Proceedings
of the 2002 International Symposium on Software Testing
and Analysis (ISSTA), Rome, Italy, July 2002, pp.123-133.

[5] Y. Cheon and G. T. Leavens, “A simple and practical
approach to unit testing: The JML and JUnit way”,
Proceedings of 16th European Conference Object-
Oriented Programming (ECOOP), 2002, pp. 231-255.

[6] J. Chang and D. J. Richardson, “Structural Specification-
Based Testing: Automated Support and Experimental
Evaluation”, Proceedings of the 7th European Software
Engineering Conference / 7th ACM Sigsoft Symposium on
the Foundations of Software Engineering (ESEC/FSE),
Sept. 1999, pp. 285-302.

[7] W. Dickinson, D. Leon, and A. Podgurski, “Finding
Failures by Cluster Analysis of Execution Profiles”,
Proceedings of the International Conference on Software
Engineering (ICSE), 2001, pp 339-348.

[8] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin,
“Dynamically discovering likely program invariants to

support program evolution”, IEEE Transactions on
Software Engineering, vol. 27, no. 2, Feb. 2001, pp. 1-25.

[9] N. Gupta, “Generating Test Data for Dynamically
Discovering Likely Program Invariants”, Proceedings of
ICSE 2003 Workshop on Dynamic Analysis (WODA), May
2003, pp. 21-24.

[10] Hansel 1.0, http://hansel.sourceforge.net/.

[11] S. Hangal and M. S. Lam, “Tracking down software bugs
using automatic anomaly detection”, Proceedings of the
International Conference on Software Engineering (ICSE),
May 2002, pp. 291-301.

[12] M. Harder, J. Mellen, and M. D. Ernst, “Improving test
suites via operational abstraction”, Proceedings of the
International Conference on Software Engineering (ICSE),
Portland, Oregon, May 2003, pp. 60-71.

[13] Parasoft Corporation, Jcontract manuals version 1.5,
http://www.parasoft.com/, October 9, 2002.

[14] Parasoft Corporation, Jtest manuals version 4.5,
http://www.parasoft.com/, October 23, 2002.

[15] JUnit, http://www.junit.org.

[16] B. Meyer, Object-Oriented Software Construction, New
York, London, Prentice Hall, Second Edition, 1997.

[17] J. W. Nimmer and M. D. Ernst, “Static verification of
dynamically detected program invariants: Integrating
Daikon and ESC/Java”, Proceedings of First Workshop on
Runtime Verification (RV), Paris, France, July 23, 2001.

[18] C. Pavlopoulou and M. Young. “Residual test coverage
monitoring”, Proceedings of International Conference of
Software Engineering (ICSE), 1999, pp. 277-284.

[19] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold, “Test
Case Prioritization”, IEEE Transactions on Software
Engineering, vol. 27, no. 10, October 2001, pp. 929-948.

[20] P. D. Stotts, M. Lindsey, and A. Antley. “An informal
formal method for systematic JUnit test case generation”,
Proceedings of 2nd XP Universe and 1st Agile Universe
Conference (XP/Agile Universe), 2002, pp 131-143.

[21] A. Srivastava and J. Thiagarajan, “Effectively prioritizing
tests in development environment”, Proceedings of
International Symposium on Software Testing and Analysis
(ISSTA), Rome, Italy, July 2002, pp. 97-106.

[22] J. Whaley, M. C. Martin and M. S. Lam, “Automatic
Extraction of Object-Oriented Component Interfaces”,
Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA), July 2002, pp. 218-228.

[23] M. A. Weiss, Data Structures and Algorithm Analysis in
Java. Addison Wesley Longman, 1999.

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

