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ABSTRACT
We explore the automatic generation of test data that re-
spect constraints expressed in the Object-Role Modeling
(ORM) language. ORM is a popular conceptual modeling
language, primarily targeting database applications, with
significant uses in practice. The general problem of even
checking whether an ORM diagram is satisfiable is quite
hard: restricted forms are easily NP-hard and the problem
is undecidable for some expressive formulations of ORM.
Brute-force mapping to input for constraint and SAT solvers
does not scale: state-of-the-art solvers fail to find data to sat-
isfy uniqueness and mandatory constraints in realistic time
even for small examples. We instead define a restricted sub-
set of ORM that allows efficient reasoning yet contains most
constraints overwhelmingly used in practice. We show that
the problem of deciding whether these constraints are con-
sistent (i.e., whether we can generate appropriate test data)
is solvable in polynomial time, and we produce a highly ef-
ficient (interactive speed) checker. Additionally, we analyze
over 160 ORM diagrams that capture data models from in-
dustrial practice and demonstrate that our subset of ORM
is expressive enough to handle their vast majority.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
testing tools; H.2.3 [Database Management]: Languages

General Terms
Design,Languages

1. INTRODUCTION
Modeling languages offer a concise way to capture design

decisions and express specifications at a level of abstraction
higher than concrete code. The higher level of abstraction
often lends itself to automated reasoning. Nevertheless, a
competing trend is that of adding more and more function-
ality to modeling languages, in order to bridge the gap be-
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tween design and implementation. Several modern modeling
languages (e.g., UML) have distinct sub-languages, some of
which are highly abstract, while others are much closer to
the implementation. Automatic reasoning is easy in the for-
mer case but becomes quite hard in the latter.

In this paper, we analyze a modeling notation and, in par-
ticular, its tradeoffs between expressiveness and automatic
reasoning ability. Our modeling language is Object-Role
Modeling (ORM ) [10, 20]: a modern, popular, and pow-
erful data modeling language. ORM is a general language
for conceptual modeling, although its primary application is
in the database domain. For concreteness, we use database
terminology in this paper, although the results are domain-
independent. The problem we want to solve is the automatic
generation of test data that respect semantic constraints ex-
pressed in the model.

Producing valid test data is a problem with several ap-
plications in practice. Developers often want sample data
both to verify that their specification corresponds to their
understanding of the data, and to test programs as they are
being developed. Generating unconstrained data is unlikely
to be appropriate, however. Useful data typically needs to
respect many semantic constraints: e.g., on a given table a
certain field’s values may be unique (i.e., the field is a key);
one table’s contents may be a subset of the contents of an-
other; data values of a field may need to be in a specific
range; etc. Such constraints are often concisely captured
in data modeling languages. Thus, it is convenient and in-
tuitively appealing to use a high-level model, expressed in
a data modeling language, as a blueprint for creating large
volumes of concrete well-formed data automatically.

Nevertheless, the problem of satisfying well-formedness
constraints mechanically is often quite hard. In our case,
producing sample data from ORM models (called diagrams
in ORM parlance) is at best an intractable problem: even
a simplified version of basic ORM constraints, with each
table (predicate in ORM terminology) holding up to a sin-
gle entry, makes the problem NP-hard. Checking realistic
ORM constraints is typically even harder: constraints that
describe relationships among different entries of a predicate
typically result in a double-exponential runtime complex-
ity. Even with small amounts of data to generate, a naive
translation of the constraints into logic needs to model not
just the predicate interconnections but also the contents of
predicates. The result typically far exceeds the capabilities
of modern constraint solving tools. In an experiment with
state-of-the-art solvers we could not get a satisfying assign-
ment for as few as 3 entities with 20 elements each.
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Practical uses of ORM modeling, however, often only con-
centrate on a modest subset of the language. The main
constraints on predicates encountered in practice are spe-
cial forms of internal uniqueness constraints (“this field or
set of fields is a primary key”), mandatory constraints (“ev-
ery value of this entity needs to participate in this predi-
cate”) and subtype constraints on objects. Thus, we define
an interesting subset of ORM, ORM− (pronounced “ORM-
minus”), with such commonly used yet simple constraints.
We define ORM− precisely and present an algorithm that
a) detects errors that make a diagram unsatisfiable in poly-
nomial time (relative to the diagram size); and b) produces
large quantities of data in time proportional to the size of
the data produced. (Full ORM inputs can be used with
our algorithm but constraints outside the ORM− subset are
ignored.)

In overview, the novel elements of our work are as follows:

• We define ORM−: a subset of the ORM modeling no-
tation with desirable properties for automated reason-
ing. The satisfiability (i.e., consistency) of diagrams in
ORM− can be checked efficiently—both in theoretical
terms (polynomial time) and in practice (sub-second run-
time). ORM− represents a sweet spot in the tradeoff be-
tween automation and expressibility: we show two small
variations that make the problem intractable when added
to the existing set of allowed constraints. Although there
are similar results for other notations, we are not aware of
any such result for ORM or modeling languages straight-
forwardly reducible to/from ORM.

• Our ORM subset is of practical interest: the vocabulary
allowed was selected after consultation with database engi-
neers who use the ORM notation. Our constraints are pre-
cisely those used heavily in practice, perhaps suggesting
that database engineers avoid too-expressive constraints.
We validate the applicability of ORM− with an extensive
study of ORM diagrams in real industrial use. We exam-
ine over 160 diagrams that contain some 1800 constraints
in total. Of those constraints, only 24 are not expressible
in ORM−. The vast majority of diagrams are completely
free of constraints outside the ORM− subset.

2. BACKGROUND: ORM
Object Role Modeling (ORM) is a data modeling language

that attempts to model a system in terms of its objects and
the roles that they play. ORM has a graphical notation and
tries to capture common properties that are well-understood
by database programmers. We next present briefly the most
common elements of ORM. Some advanced elements are
elided, in the interest of space, since they do not qualita-
tively affect our subsequent discussion.

For the rest of this paper, we follow the convention of
calling a model specified in ORM a “diagram”. When we
talk of a “model” (as a noun) of the diagram, we mean a set
of data that satisfy the diagram’s constraints—analogously
to the use of the term “model” in logic.

Entity

(e)
Value

relation

Figure 1: Basic notation

The basic components of the system being modeled are
referred to as objects. Objects can be either values (i.e.,
well understood objects, such as a number or a string) or
entities (derivative objects that are mapped to values). Ob-
ject types are related to each other through predicates. Any
number of object types can be related to each other, thus
there can be predicates of any arity. If an object type e is
related to another object type f through a predicate p, we
say object types e and f play roles in the predicate p. The
term role is used to refer to the relationship between an ob-
ject type and a predicate, since an object type can be used
in multiple predicates. In the relational world, a predicate
can be thought of as a relation or table. The notation for
value and entity types is shown in Figure 1. Value types are
designated by a dotted-line ellipsis, while entity types are
designated by a solid-line ellipsis. Typically each entity is
identified by a single value type (e.g., a name string), which
is listed in parentheses under the entity name. In general,
the difference between value types and entity types has little
consequence in our examples, and we will occasionally use
the term “entity” to mean “entity or value”.

Person

(name)

submits Paper

(title)

reviews

Figure 2: Simple ORM diagram

Consider the example in Figure 2. We are trying to model
a simple system to store information about conference sub-
missions. Two entity types, “Person” and “Paper” represent
our objects. There are two predicates reviews and submits.
Each of the entities play a role in both these predicates. A
database that corresponds to this diagram will consist of two
tables (assuming what is called the “standard mapping” of
ORM diagrams to an implementation [11]): one with a list
of people and the papers they submitted and another with
a list of reviewers and papers they review.

There are no constraints specified on the ORM diagram
in Figure 2. The modeler may want to specify a restriction
that a person cannot both submit and review papers. An-
other restriction might be that a person can submit at most
two papers. Or the modeler may require that a paper not
have more than a set number of authors. Next, we list the
main types of constraints that can be specified in an ORM
diagram with examples. For a more detailed treatment of
ORM, the reader is referred to Halpin’s book [10].

Uniqueness constraints. This constraint specifies that the
occurrence of a value in any column of a predicate is unique.
In database terminology, a uniqueness constraint on a pred-
icate identifies the keys of the corresponding table. Unique-
ness can be represented in the ORM diagram by a double
arrow over the roles that are unique in a predicate. For ex-
ample, consider the diagram in Figure 3. The line over the
role played by Paper in the predicate accepted indicates that
a particular paper can occur in that table at most once—i.e.,
a paper can be accepted to at most one conference.

Uniqueness can span multiple roles, implying that each
tuple with values from the roles is unique. Furthermore, the
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Person

(name)

Conference

(cname)

Paper

(title)

acceptedsubmits
U

Figure 3: Uniqueness and mandatory constraints

roles can belong to different predicates—a constraint called
external uniqueness. In this case, the tuple spanning multi-
ple roles is considered on the (implicit) predicate resulting
from joining the actual predicates on their common values.
For instance, in Figure 3, the roles for Person in predicate
submits and for Conference in predicate accepted are con-
nected by an external uniqueness constraint, signified by the
circled“U” in the diagram. This specifies that no person can
have more than one paper in the same conference.

In our formulation of ORM, we enforce the common im-
plicit uniqueness constraint spanning all roles of a predicate.
That is, a predicate cannot contain two tuples that are the
same across all roles.

Mandatory constraints and independence. In Figure 3,
the black dot connecting the entity Paper to the role it plays
in the submits predicate denotes a mandatory constraint.
This indicates that all papers in our universe are submitted.

A more complex form of the mandatory constraint is the
disjunctive mandatory constraint. This links roles of the
same entity in multiple predicates and signifies that all ob-
jects in the entity have to be a part of some (possibly all)
of those predicates. This constraint is represented by con-
necting each of the roles that are mandatory to a black dot.
We will not encounter an example of such a constraint in
our discussion, except in its implicit form. In an ORM di-
agram, every object of an entity is implicitly assumed to
participate in some of the predicates in which the entity has
a role. This means that every entity in the system has an
implicit disjunctive mandatory constraint over all its roles.
(If an entity plays only one role, then this is equivalent to
a regular mandatory constraint on that role. For instance,
a black dot would be redundant on the links from entities
Person or Conference in Figure 3.)

An exception to this rule is independent entity types, des-
ignated with an exclamation mark after their name. Objects
of an independent type can exist without participating in
predicates.

Frequency constraints. Frequency constraints generalize
uniqueness constraints, by allowing each tuple to occur a
number of times, instead of just once. In Figure 4, the fre-
quency constraint of (3-5) on the roles played by Conference
and Paper states that each combination of conference and
paper that appears in the predicate has to appear three to
five times—i.e., each paper needs three to five reviewers for
the same conference.

Subset, Equality constraints. A subset constraint can be
applied over two ranges of roles in two predicates. The con-

Conference

(cname)

Paper

(title)

Person

(name)

reviewed_by

3 - 5

Figure 4: Frequency constraints

straint specifies that the tuples in the roles of the first pred-
icate have to be among the tuples in the roles of the second.
An important restriction here is that the types of the roles
of the sub-predicate in a subset constraint have to match the
corresponding roles of the super-predicate on a role by role
basis. The equality constraint is a two-way subset: it forces
the two sets of tuples to be equal, as the name suggests.

In the example of Figure 5, the subset constraint spans the
entire accepted predicate, specifying that a paper needs to
have been submitted to the conference, if it is to be accepted.

Paper

(title)

accepted

Conference

(cname)

submitted

SUB

Figure 5: Subset constraint

Woman

(wname)

Person

(name)

{Jeff,Jennifer,Jessica,James}

Man

(mname)

Figure 6: Subtype and value constraints

Subtype constraints. This constraint is used to model
usual subtyping situations. For example, the Man and
Woman entity types can be declared as subtypes of Per-
son, as shown in Figure 6.

Value and cardinality constraints. A value constraint is
used to enumerate the range of values that an entity type
may have. In the example of Figure 6, the allowed values for
the Person entity type are given explicitly. Value constraints
can also be used with a range notation—e.g., one can specify
that the Age value type needs to be a number between 1 and
150. It is important to make the distinction between a value
constraint, which specify the allowed values in a type, and
cardinality constraints, which specify how many elements
a type has. Clearly a value constraint implies an upper
bound on the cardinality. Our graphical notation does not
reflect cardinality constraints, although they do exist in the
diagram. A cardinality constraint can be either a number
or a range.
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Exclusion constraints. This constraint is used to model
a situation where a particular value can occur in only one
table in any valid model of the diagram. For instance, in
a system that stores the current state of papers, a paper
cannot be both submitted and accepted. We will see the
graphical notation for exclusion constraints in Section 3.1.

Ring constraints. A predicate represents a relation over
the sets of values for each of the entities playing roles in the
predicate. For predicates with all roles played by the same
entity, we can specify various properties that the relation
should possess. For example, in Figure 7, we state that the
works with predicate is symmetric. That is, if a person A
works with a person B, then B also works with A.

Person

(name)

works_with

SYM

Figure 7: Ring constraint

Other types of ring constraints include acyclic, transitive,
intransitive, reflexive, irreflexive, and asymmetric.

3. DIFFICULTY OF ANALYZING ORM
The problem we want to address is that of generating sam-

ple databases from ORM diagrams. We assume that we re-
ceive as input an ORM diagram and we want to determine
its satisfiability (i.e., the existence of data that populate
all types and predicates and satisfy all constraints). Some
variants of ORM (including the one supported by the tool
used in our experiments) allow arbitrary query-like code (in
Datalog or SQL) to be used as a notation for constraints,1

making the problem of determining satisfiability undecid-
able. (Although query languages guarantee termination,
other common problems, such as query subsumption, are
undecidable.) Even without allowing arbitrary queries, un-
decidability is not uncommon when dealing with highly ex-
pressive integrity constraints. For instance, the general class
of “numeric dependencies” [7] in databases has no decidable
inference process.

Even if we limit ourselves to “standard”ORM constraints,
however, the problem is at least NP-hard. We next discuss
the difficulties involved, and present a (failed) brute-force
attempt at the problem, which serves to frame our later
restriction of ORM to a simpler subset.

3.1 NP-Hardness
Our problem of producing satisfying data for ORM di-

agrams is NP-hard. Bommel et al. have shown [23] the
NP-hardness of some slightly different variants of the ORM
satisfiability problem. Nevertheless, it is easy to produce a
much simpler NP-hardness proof for our exact formulation
of ORM and the satisfiability problem.

We reduce the well-known NP-complete boolean satisfia-
bility problem, 3SAT, to our problem. A 3-CNF formula has

1The full set of ORM constraints is not standardized (“not
all versions of ORM support all these symbols” [9]). The
constraint that allows us to write queries as part of the di-
agram is the asterisk (“*”) constraint—symbol 23 in [9].

the form (a1∨a2∨a3)∧(b1∨b2∨b3)∧..., with a1, a2, a3, b1, ...
representing expressions qi or ¬qi over a set of boolean vari-
ables q1, q2, ..., qn. A CNF formula can be translated to an
ORM diagram using the following steps.

1. Introduce an object type for each variable qi in the CNF
formula

2. Introduce an object type for each clause ci in the CNF
formula

3. Impose a value constraint on each type introduced above.
The value constraint restricts each type qi to have just
one value ‘qi’. Similarly, each clause is restricted to have
one value ‘ci’.

4. For each variable qi, let n be the number of times it occurs
in the clauses ci to cj . If n > 0, create a (n + 1)-ary
predicate qi-true for the variable qi.

5. Similarly, for each variable ¬qi let m be the number of
times it occurs in the clauses ci to cj . If m > 0, create a
(m+1)-ary predicate qi-false for the variable ¬qi.

6. Connect type qi to predicates qi-true and qi-false

7. Impose an exclusion constraint on the roles played by qi

in qi-true and qi-false

8. Connect each clause ci to the predicate qi-true if it con-
tains qi or qi-false if it contains the variable ¬qi

Consider a CNF formula (q1 ∨ q2 ∨¬q3)∧ (q1 ∨¬q2 ∨ q3)∧
(¬q1∨q2∨¬q3)∧ ...(...). Figure 8 illustrates the relevant part
of the formula’s transformation.

C3

{c3}

C2

{c2}

C1

{c1}

Q3

{q3}

Q2

{q2}

Q1

{q1}

q3-false

q2-false

q3-true

q2-true

q1-false

q1-true

X

X

X

Figure 8: 3SAT to ORM

Based on the semantics of ORM constraints, it is easy to
see that the 3SAT formula is satisfiable iff the ORM dia-
gram is satisfiable. The exclusion constraints on the roles
played by the qis force each value to appear in at most one
of the qi-true or qi-false predicates. Recall that there is an
implicit disjunctive mandatory constraint over all the roles
played by the same type, since none of the types are “in-
dependent”. Therefore, each qi value appears exactly once
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in the predicates. A similar implicit disjunctive mandatory
constraint on the roles played by the cis ensures that the
single value of each of these entities appears in at least one
of the predicates, effectively implementing a disjunction.

Note that the ORM satisfiability problem is NP-hard,
but not clearly NP-complete. Bommel et al. claimed an
NP-completeness proof for their two satisfiability problems
[23]. The proof is based on a brute-force nondeterministic
guess of the contents of each predicate. The claim is that
because all populations are bounded by m—the maximum
frequency constraint upper bound—one can nondeterminis-
tically choose populations with up to m elements for each
entity and predicate in polynomial time. Yet the popula-
tions will be of up to size m, which is exponential relative
to the representation of m, which is the input to the prob-
lem. Thus the argument of Bommel et al. is wrong: even a
non-deterministic Turing machine cannot guess all possible
populations in time polynomial to the size of the input. (We
reported this finding to the authors in May 2006.)

We speculate that when complex constraints are included
(such as subset or ring constraints) the problem is unde-
cidable (or with a double-exponential complexity, if there is
a known size bound). Yet, for a simpler subset the prob-
lem is just NP-complete, and for a yet simpler subset it is
polynomial, as we discuss in Section 4.

3.2 Brute-Force Approach
As we saw, the ORM diagram satisfiability problem is

fairly hard. There are, however, good reasons to try a com-
bination of brute-force translation and heuristic approaches.
There is a standard translation of ORM constraints to first-
order logic (e.g., [8]) that directly captures the semantic in-
tricacies of constraints. At the same time, reasoning tools
have matured and state-of-the-art constraint solvers and
SAT solvers often achieve impressive scalability. In prac-
tice, we found the brute-force + heuristic approach to be
a bad fit for our problem. Nevertheless, the result yields
insights that suggest a scalable solution.

We translated ORM diagrams to inputs for two differ-
ent tools: the CoBaSa tool [17] and the Alloy Analyzer [13,
21]. This is a good choice of candidate tools: Alloy is well-
known and mature, yet does not emphasize scalability, while
CoBaSa offers an expressive front-end, an efficient transla-
tion, and a state-of-the-art pseudo-boolean constraint solver
(PBS [1]) as its back-end. We used the standard translation
of ORM to first-order logic, customized to the needs of the
tool at hand. Generally we map every ORM predicate to a
logic predicate, every value of an entity to a logical value,
and specify constraints using a logic notation. For instance,
if there is a mandatory constraint on the role played by the
entity A in a predicate, this would translate to CoBaSa as:

For_all a in A { Sum i in id tableA(i, a) >= 1 }

This states that every value in the domain of A has to occur
at least once in tableA.

The results of one of our CoBaSa experiments are shown
in Table 1. We use an input with three entity types: A, B,
C. These are linked with a single ternary predicate (A,B,C)
and a frequency constraint spanning (B,C). Furthermore, B
and C are mandatory. This simple input should yield a lower
bound for the cost of adding more complex constraints.

Overall, this approach does not scale very well. Even our
simple, small examples take minutes to process. The prob-

Table 1: Relation (A,B,C) with frequency constraint of

(min=2, max=3) spanning (B,C). B and C are manda-

tory. PBS aborts SAT solving after 1500 seconds. The

first four columns give cardinalities. “vars” and “clauses”

measure the complexity of the SAT problem. SAT in-

dicates a satisfiable problem. The last column is the

CoBaSa processing time.
A B C pred vars clauses SAT time [s]
3 2 2 10 150 200 yes 0.23
3 2 2 15 225 300 no 197.92

10 2 2 12 264 240 yes 0.12
10 2 2 13 286 260 no 119.51
10 2 2 15 330 300 no 260.67
10 4 4 40 2000 3200 yes 0.90
10 5 5 25 no abort
10 5 5 70 4900 8750 yes 3.84
10 6 6 100 9400 18000 yes 4.76
10 8 8 150 23100 48000 yes 22.50
10 10 10 200 46000 100000 yes 68.14
10 10 10 250 57500 125000 yes 180.10

lem size (in terms of variables and clauses) scales exponen-
tially relative to the original input. (Note that the original
input is the logarithmic representation of the number n of
entities, while the input to the solver is O(nc) clauses—in
this case c = 4.) We certainly cannot answer the question of
whether a satisfying configuration exists for realistic inputs
(which will specify that entities contain millions of objects:
recall that we want to produce test databases that satisfy
the stated constraints). Our experience with the Alloy Ana-
lyzer was quite similar: we found it unable to yield solutions
for an example domain of 3 entities with 5 to 40 values each.

The problem is that the brute-force approach is not a
very good fit for our problem. It is much better for dealing
with logically deep constraints, than with size constraints
on a large space. Nevertheless, the approach has value for
detecting some unsatisfiable (i.e., contradictory) configura-
tions. It is often the case that a small model is sufficient
for disproving the consistency of constraints. This has been
a standard argument for practical uses of Alloy. For this
to apply to our problem, the original ORM diagram must
contain no explicit size constraints on object types or role
frequencies that will make the search space unmanageable.
A good example is a diagram that has no frequency, value,
or cardinality constraints but has a predicate with two ring
constraints, one irreflexive, one transitive, and two manda-
tory constraints on the same roles. This is a logically unsat-
isfiable constraint system: a transitive relation on a finite
space will eventually include either a limit element or a cy-
cle. The limit element cannot occur on the right side of the
relation (so the mandatory constraint is violated), and the
cycle (plus transitivity) contradicts the irreflexivity. This
deep-but-not-size-sensitive reasoning is handled well by a
brute-force translation into input for constraint solvers.

Although the brute-force approach fails, it suggests the
direction to proceed. The problem with the brute-force ap-
proach is that it entails an inherent blowup in the problem
size, because it models the interrelations of the members of
types. This makes the problem exponentially harder: for
an input of N bits, the possible values are up to 2N and

there are up to 22
N

possibilities for the contents of enti-
ties and predicates. For complex constraints, such as ring,
subset, and exclusion, this modeling seems necessary. For
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other constraints, however, we only need to concern our-
selves with the sizes of types. Thus, if we limit ourselves
to simple constraints that only deal with the sizes of sets
and not their contents, we can obtain a scalable solution.
Fortunately, these simple constraints turn out to be exactly
the ones used overwhelmingly in practice.

4. ORM−: AN EFFICIENT AND EXPRES-
SIVE SUBSET

Given the difficulty of producing concrete data from full
ORM specifications, we concentrated on a realistic subset
of ORM. This subset was arrived upon through continuous
refinement over the course of several months, in consulta-
tion with engineers of LogicBlox—a company that markets
a database engine and ORM tools. The end result is a subset
of ORM that captures the most commonly used constraints
in practice, yet without sacrificing the ability to generate
data very efficiently. We call our ORM subset ORM− (pro-
nounced “ORM minus”).

4.1 Definition of ORM−

ORM− is the ORM subset with the following constraints:

• Uniqueness constraints: only internal uniqueness (i.e.,
over roles in a single predicate) is supported. Uniqueness
constraints can span multiple roles, but no two uniqueness
constraints can overlap. E.g., it is not expressible that, in
a single predicate, both roles A/B and roles B/C form a
unique key.

• Mandatory constraints on a single role. Disjunctive
mandatory constraints are not allowed, although the stan-
dard implicit disjunctive mandatory constraint holds, over
all roles played by the same (non-independent) type. In-
dependent types are also supported.

• Frequency constraints, which, just like uniqueness con-
straints, cannot overlap.

• Value and cardinality.

• Subtype constraints. We assume that a subtype’s value
constraints specify a subset of those of the supertype.

Notably absent are subset constraints, exclusion con-
straints, and ring constraints. It is possible that some of
those can be added while maintaining the desirable proper-
ties of ORM− (i.e., sound and complete satisfiability deci-
sion in polynomial time).2 Some additions (e.g., exclusion)
immediately result in an NP-hard problem, however.

4.2 Testing Satisfiability for ORM−

A first question regarding satisfiability of ORM− is “what
are instances of un-satisfiability?” Diagrams in ORM− can
be unsatisfiable for a variety of reasons. Figure 9 shows three
examples.

The top example represents a simple instance of contra-
dictory cardinality constraints. (Recall that cardinality con-
straints are not depicted graphically in our diagrams, al-
though they are maintained in the properties of diagram
2For instance, we speculate that with a more complex trans-
lation we can support external uniqueness constraints, over-
lapping frequency constraints, as well as subset constraints
under the restriction that all other constraints on the super-
set predicate are identical to the constraints of the subset
predicate. We have not, however, attempted to prove that
such a generalization works.

Object Object1

{true,false}

Predicate0

# >= 1,000,000  

Object

Predicate

Object1

{true,false}

3

Object3Object2

Predicate2

Predicate1
2

Figure 9: Three unsatisfiable diagrams.

elements. In this case, we show the constraint in a text com-
ment.) The diagram cannot be satisfied since it requires at
least a million objects of one type (the designer wants a large
test database) but the type is in a one-to-one mapping with
a subset of a two-object type. The middle diagram cannot
be satisfied since the predicate needs to contain three tuples
for each left-hand-side value, yet the right-hand-side type
has at most two values. This requirement violates the im-
plicit constraint that all tuples in a predicate be unique. The
bottom diagram is a bit more interesting: through a cycle
of constraints the cardinality of type Object2 is required to
be at least two times itself.

We can test the satisfiability of ORM− diagrams in poly-
nomial time. The key property of ORM− is that all its con-
straints can be expressed as numeric constraints (inequal-
ities) on the sizes of sets, instead of their contents. The
sets are polynomial in number, relative to the original in-
put. Specifically, we translate all ORM− constraints into
numeric constraints of the form c · x ≤ y1 · y2 · ... · yn, or
x ≤ y1 + y2 + ... + yn, where c is a positive integer constant
and x, y1, ..., yn are positive integer constants or variables.
Note that, although these are constraints on the integers
(suggesting that the problem is hard), we have no addition
or multiplication of variables (i.e., unknowns) on the left
hand side of the inequality.

Specifically, the translation rules are as follows:

• For each type A, introduce a fresh variable a, represent-
ing its cardinality. (We follow this convention of upper and
lower case letters in the following.) For each predicate R,
introduce a variable r, representing its cardinality (num-
ber of tuples—distinct by definition). For each role in R
played by type A, introduce a variable ra, representing the
number of unique elements from A in this role.

• Produce inequalities ra ≤ a, and ra ≤ r, for each role that
type A plays in predicate R.

• For each cardinality constraint that limits the cardinality
of a type A to be in a range min...max, produce inequal-
ities min ≤ a and a ≤ max. Similarly for predicates.
We assume, without loss of generality, that each type and
predicate has a maximum cardinality constraint. (They
already have a minimum cardinality constraint of 1, as we
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do not want empty types or predicates in the solution.) In
practice, for types or predicates that do not have an ex-
plicit cardinality constraint, we can produce the numeric
constraint a ≤ M , where M is an upper bound of the size
of all entities or of the desired output (e.g., MaxInt).

• For each value constraint on a type A, produce inequality
a ≤ ds, where ds is the domain size defined by the value
constraint. E.g., for a value constraint that restricts a type
to four distinct values ds = 4. For a value constraint of
the form 5...30, ds = 26.

• For each mandatory constraint on the role played by type
A in predicate R, produce inequality a ≤ ra. (Since we
also have ra ≤ a for each role, the result is an equality,
but all our reasoning is done in the inequality form.)

• For each frequency constraint, with frequency range
fmin...fmax, on the roles played in predicate R by types A,
B, ..., K, introduce a variable rab...k, representing the num-
ber of unique tuples in these roles. Produce the following
inequalities:

r ≤ fmax · rab...k

fmin · rab...k ≤ r

rab...k ≤ ra · rb · ... · rk

ra ≤ rab...k, rb ≤ rab...k, ..., rk ≤ rab...k

Note that we are representing the number of unique tuples
only for sets of roles that have a frequency constraint, not
for all subsets of the roles of a predicate. Note also that
uniqueness constraints and constant frequency constraints
are a special case of the above. (A uniqueness constraint
is a frequency constraint with a minimum and maximum
frequency of 1.)

• For each subtype constraint between types A and S, pro-
duce the inequality a ≤ s.

• For each predicate R with roles played by types A, B, ...,
N, express the implicit uniqueness constraint over all roles
as follows: Produce inequality r ≤ rab...k · rlm...p · ... · rn,
where the elements of the right hand side are all the vari-
ables corresponding to the ranges of roles that participate
in some frequency constraint on the predicate, followed
by all the variables corresponding to roles that are under
no frequency constraint. Recall that frequency constraints
cannot overlap.

• For each non-independent type A that plays roles in
predicates R, S, ..., V, introduce the numeric constraint
a ≤ ra + sa + ... + va. This captures the implicit disjunc-
tive mandatory constraint over all roles played by a type:
each object of a non-independent type needs to appear in
some predicate.

For illustration, consider the translation of the top ex-
ample of Figure 9. If we call the left type in the diagram
“A”, the predicate“R”, and the right type“B”, and follow our
naming convention for numeric variables, we get the inequal-
ities: 1000000 ≤ a (cardinality on A), a ≤ ra (mandatory
on A), r ≤ ra (uniqueness on role of A), r ≤ rb (uniqueness
on role of B), b ≤ 2 (value on B), as well as the implicit
constraints on roles: ra ≤ a, ra ≤ r, rb ≤ r, rb ≤ b, and
the implicit cardinality constraints that make every variable
at least 1 and smaller than a constant upper bound. (We
omit the implicit uniqueness over all roles, and the implicit
disjunctive mandatory constraint, as they are redundant for

this example. The implicit mandatory constraint cannot be
used, anyway, unless we know that the elements shown con-
stitute the whole diagram and not just a part of it.) It is easy
to see that these numeric constraints imply 1000000 ≤ 2—a
contradiction.

The above translation supports the key properties of
ORM−: The translation is sound and complete, in that an
ORM diagram is satisfiable if and only if the integer in-
equalities resulting from the translation admit a solution.
Furthermore, testing this property can be done in polyno-
mial time. Note that the above does not mean that every
dataset whose type, role, and predicate cardinalities satisfy
the integer inequalities will satisfy the ORM constraints! In-
stead, it means that for every satisfying assignment of the
integer inequalities, we can produce some dataset that will
satisfy the ORM constraints. We next present in brief the
key arguments establishing these properties.

Sound and Complete Decision. If the ORM constraints
are satisfiable, then the numeric constraints also hold: the
numeric constraints just capture size properties of sets of
values that satisfy the ORM constraints. The inverse direc-
tion is harder, but our process of showing this also yields a
way to produce objects that satisfy the ORM constraints.
Starting from an integer variable assignment satisfying all
inequalities, we can generate data for a database that satis-
fies the original ORM constraints, as follows:

• For each type A without a supertype, create a new objects
from the set specified by the type’s value constraint (if one
exists). (We follow our lower/upper case convention—i.e.,
a is type A’s cardinality in the solution of the size inequal-
ities.) The crucial observation is that ORM− constraints
do not restrict which of these objects participate in a role,
predicate, or type, except in three cases: a subtype should
only contain objects from its supertype; the objects in a
role RA on predicate R played by type A should be a pro-
jection over RA of all the tuples of any range of roles that
includes RA, including the entire R; the implicit disjunc-
tive mandatory constraint should hold: each object of a
type should participate in one of the roles. We can satisfy
these requirements with an appropriate choice of objects.
We next discuss enumerations of objects without specify-
ing in detail how the enumeration is implemented, as long
as it is clear that one exists. All enumerations mentioned
can be done in time proportional to the size of the output,
but some of the algorithms are fairly lengthy.

• For each subtype B of a type that has been populated
with objects, pick b objects from the supertype and pop-
ulate the subtype with them. Repeat until all types are
populated. The ORM subtype constraint of the original
diagram is now satisfied, as are any value and cardinality
constraints on types.

• For each type A, populate all roles RA, SA, ..., VA that
A plays with ra, sa, etc. elements. If A is not indepen-
dent, ensure that all elements of A participate in some
role. This is possible since a ≤ ra + sa + ... + va After this
step, the implicit disjunctive mandatory and any explicit
mandatory constraints of the ORM diagram are satisfied.

• At this point all roles are populated with the unique ob-
jects they contain. (I.e., we have computed the projection
of each predicate on each role.) For each range of roles RA,
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RB , ..., RK that participate in a frequency (or uniqueness,
as a special case) constraint, pick rab...k distinct tuples so
that their projections on roles are the computed popula-
tion of RA, RB, etc. Such tuples are guaranteed to exist
since rab...k ≤ ra · rb · ... · rk.

• Finally, for each predicate produce its entire contents by
enumerating the unique combinations of the sub-tuples
from each range of roles that participates in a frequency
constraint, and the objects in the roles that are yet unfilled
(i.e., roles that do not participate in frequency constraints)
until producing r tuples. This is guaranteed to be possible
since r ≤ rab...k · rlm...p · ... · rn. The enumeration of tuples
should be done so that the sub-tuples from roles in fre-
quency constraints are covered evenly (i.e., two sub-tuples
of the same role range are used either the same number of
times or with a difference of one) and all objects from roles
that are not under frequency constraints are used. This is
guaranteed to produce the right frequencies for the con-
tents of ranges of roles used in frequency constraints, since
for each such range RA, ..., RK , we have r ≤ fmax · rab...k,
or r/rab...k ≤ fmax, and similarly for fmin. That is, in
producing r complete tuples, we are guaranteed to repeat
each sub-tuple in role range RA, ..., RK at least fmin and
at most fmax times.

Polynomial Testing. We can test the satisfiability of nu-
meric inequalities produced by our translation through a
fixpoint algorithm. Recall that our constraints are of the
form c · x ≤ y1 · y2 · ... · yn, or x ≤ y1 + y2 + ... + yn, where
c is a positive integer constant and x, y1, ..., yn are positive
integer constants or variables.

1. We first rewrite all inequalities of the form c ·x ≤ y1 · y2 ·

... · yn into x ≤ (y1 · y2 · ... · yn)/c.

2. For each variable, we can maintain its current upper
bound (recall that we assume cardinality constraints for
all entities and predicates in the original input, although
these can be MaxInt) and, on every step, we substitute
the current upper bounds for all variables on the right
hand side of each inequality and perform the arithmetic
operations (the division is integer division, performed af-
ter all multiplications). This produces candidate upper
bounds for variables. The minimum of the candidate up-
per bounds for a variable and its current upper bound
becomes the variable’s upper bound for the next step.

3. Step 2 repeats until either an upper bound crosses a lower
bound (i.e., we get x ≤ k and m ≤ x, where m > k for
some variable x) or all upper bounds remain unchanged
during a step. The former signifies an unsatisfiable case,
the latter a satisfying assignment.

This algorithm is correct because it maintains a conser-
vative upper bound on cardinalities on any step. Any satis-
fying assignment will need to have values at most equal to
the respective upper bounds. When the algorithm reaches
fixpoint, all inequalities are satisfied by the current upper
bounds, which, thus, constitute a solution.

It is easy to see that this algorithm runs in polynomial
time relative to the size of the input. The fixpoint computa-
tion runs a polynomial number of times between successive
applications of an inequality of the form x ≤ (y1 ·y2·...·yn)/c.
(Inequalities of other forms can only apply a polynomial

number of times. If there are n variables in the system,
each inequality can yield a different upper bound at most n
times: the variable on its right hand side with the smallest
current bound can never get any smaller, as it satisfies all
other inequalities in whose left hand side it appears. Sim-
ilarly, the second-smallest-upper-bound variable will never
get smaller after one round, etc.) Hence, the only reason
that candidate upper bounds may keep becoming smaller
is inequalities that contain the division operator. Yet each
of those can apply at most a number of times logarithmic
relative to the value of the original upper bounds (since it
reduces the upper bound by a multiplicative factor) which
is polynomial relative to the input size.

A polynomial solution to this problem exists only because
there is no addition or multiplication of variables on the
left-hand side of an inequality (i.e., all our arithmetic oper-
ations are on upper bounds, yielding a monotonicity of the
problem). Interestingly, simple additions to the ORM− con-
straints result in addition or multiplication on the left-hand
side, and make the problem NP-complete. For instance,
adding exclusion constraints corresponds to variable addi-
tion on the left-hand side. Adding a constraint that requires
all combinations of objects (cross product) of two types to
appear in a single predicate results into multiplication of
variables on the left-hand side. It is easy to show that ei-
ther problem is NP-complete. (The proofs are presented in
the extended version of the paper, in the interest of space.)

5. ORM DIAGRAMS IN PRACTICE
To validate the usability of ORM−, we examined the use

of ORM in practice by looking at example diagrams provided
by our industrial partner, LogicBlox Inc. The diagrams
model a range of consulting, internal use, and benchmark-
ing projects: a retail prediction application, a cell band-
width prediction application, a standard database bench-
mark (TPC-H), and various internal tools. These diagrams
are the whole set of ORM data that LogicBlox has avail-
able: no selection or other filtering took place. There are,
however, threats to the representativeness of the data: the
majority of the diagrams were developed by a single engi-
neer, and all diagrams model implementations that use the
same database back-end. Nevertheless, given the variety of
diagrams and domains, as well as the input we received in
personal communication with multiple developers, we be-
lieve our study and findings to be highly valid.

Table 2 summarizes the elements of our ORM diagrams.
There are 5 distinct projects, each with one or more docu-
ments, which in turn contain one or more diagrams. Each
row represents a document and clusters of rows represent a
project. For instance, the first project contains a single doc-
ument with 7 diagrams, while the second project contains
9 documents, the largest of which has 46 diagrams. Dia-
grams in the same document are just different views: they
can share entities and predicates, while omitting detail that
is unnecessary for the aspect currently being modeled.

Overall, we analyzed 168 diagrams with about 1800 con-
straints. The vast majority of constraints are in the ORM−

subset. Only 24 constraints are not supported by ORM−.
Of these, 13 are user-defined constraints: they add arbi-
trary (query) code to the high-level diagram. This means
that the developer adds consistency code (e.g., “this predi-
cate is the join of two others over these roles”) to be gener-
ated together with normal consistency code that the ORM
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Table 2: Elements found in ORM diagrams in practice. Dgr:# diagrams in the document. Ent:# entity types.

Val ctr:# value constraints (on entity and value types, separately). IsA:# entity types that have a super type. Indp:#

independent entity types. Val:# value types. Ent ref:# entity references. Rel cont:# relation container entities. Rel:#

relations (predicates). Mnd:# mandatory constraints. Unq int:# internal uniqueness constraints. Frq:# frequency

constraints. Unq ext:# external uniqueness constraints. Eq:# equality constraints. Ring AC:# acyclic constraints

(ring). Usr:# user-defined constraints, not counting comment-only constraints. We did not see any other ORM

predefined constraints such as irreflexive, intransitive, asymmetric, etc.
Dgr Ent Val IsA Indp Val Val Ent Rel Rel Mnd Unq Frq Unq Eq Ring Usr

ctr ctr ref cont int ext AC
co 7 21 0 0 0 17 2 0 0 57 0 56 0 0 0 0 4
la 11 19 3 2 3 0 0 8 0 71 7 64 0 0 0 0 0
lb 11 31 12 4 12 15 0 0 0 55 6 55 0 0 1 3 0
ld 7 6 0 1 0 1 0 15 1 76 0 73 0 0 0 0 0
le 1 3 0 1 0 0 0 2 0 5 4 4 0 1 0 0 0
ll 12 24 7 11 6 1 0 10 0 50 20 49 n 0 0 0 0 0
lol 12 32 6 10 5 0 0 12 0 112 0 111 0 0 0 0 0
lor 4 23 2 14 2 0 0 5 0 44 6 45 0 0 0 1 0
ls 1 4 0 0 0 0 0 5 0 17 0 17 0 0 0 0 0
lu 46 94 48 31 47 0 0 12 1 528 1 523 0 0 0 0 1
mc 1 2 0 0 0 3 0 0 0 4 0 4 0 0 0 0 0
md 1 1 0 0 0 0 0 2 0 4 0 4 0 0 0 0 0
mf 1 5 1 1 0 1 0 0 0 4 8 4 0 0 0 0 0
mm 3 9 0 2 0 5 0 0 0 16 8 16 1 1 1 2 1
m 1 2 0 0 0 1 0 0 0 3 0 3 0 0 0 0 1
mo 5 22 3 13 4 0 0 13 0 65 6 66 0 0 0 1 0
mp 2 2 1 0 1 0 0 5 0 20 0 15 0 0 0 0 0
mre 3 4 0 0 0 11 1 0 6 25 10 15 0 0 0 0 0
mru 2 2 0 0 0 0 0 7 0 18 0 14 0 0 0 0 0
mu 9 8 6 0 0 0 0 27 0 84 0 48 0 0 0 0 0
mv 3 9 7 0 7 0 0 10 0 45 0 35 0 0 0 0 0
ro 13 24 0 0 0 11 1 13 0 83 0 75 0 0 0 0 5
sb 1 5 4 0 4 2 0 0 1 3 0 3 0 0 0 0 1
sl 1 3 0 0 0 2 0 0 0 4 0 4 0 0 0 0 0
st 10 11 1 0 1 22 0 0 1 64 35 63 0 0 0 0 0
Total 168 366 101 90 92 92 4 146 10 1457 111 1366 1 2 2 7 13

editor produces (e.g., for uniqueness, frequency, value, or
mandatory constraints). Checking the satisfiability of such
user-defined constraints seems unlikely, as this is an unde-
cidable problem for the general query language. Thus, we
do not believe that there is significantly more benefit to get
over what ORM− already achieves. A promising direction
may be acyclicity ring constraints, which comprise 7 of the
remaining 11 constraints that ORM− does not handle.

Our analysis did not find interesting errors in the ORM
documents. There were 19 cases of unsatisfiability, but all
were relatively benign: an entity or value was not connected
to any role or supertype. Nevertheless, finding no errors is
hardly surprising for this dataset since the ORM tool gener-
ates consistency checking code (in Datalog) automatically.
Therefore, mistakes in the specification are overwhelmingly
likely to be caught when the database is populated with
real data, and the diagrams we examined have produced
databases that are in real use.

The run-time of our satisfiability check was negligible.
Satisfiability checking is done on a per-document basis and
on a 2 GHz AMD Athlon 64 X2 machine checking the largest
document (with 528 predicates) takes about 35ms. Thus,
satisfiability checking is fast enough to be done interactively
inside the ORM editor, while the user is editing diagrams.
Test data generation takes time proportional to the output,
however, and thus needs to be done offline.

The tendency we observe is for developers to prefer to
encode complex constraints in code, rather than using the
semantically complex constraints of the modeling language.

The modeling language is instead used for easier constraints
that developers feel very comfortable with. One possi-
ble motivation may be exactly the lack of good tools for
consistency checking. Since the ORM editor works as a
code generator, errors in an ORM diagram stay unde-
tected until later, when the database is populated. Go-
ing back and fixing the diagram is costly at this stage: it
requires re-generating the database schema and the consis-
tency code, re-importing data, and possibly dealing with the
re-integration of hand-written code that was implemented
against the faulty database. It is, thus, possible that tools
like ours will encourage the use of more complex constraints.

6. RELATED WORK
There are several earlier approaches to automatic example

data generation. Compared to other work on checking the
satisfiability of ORM, ours is distinguished by its complete-
ness (for ORM−) and emphasis on practicality. Jarrar and
Heymans [14] use the fact that “no complete satisfiability
checker is known for ORM” to motivate the introduction of
9 unsatisfiability patterns that capture conceptual model-
ing mistakes. The presence of these patterns can be checked
with a program search. Heymans [12] describes a translation
of a subset of ORM to a formalism with an ExpTime decision
procedure. Keet [15] reduces another subset of ORM (em-
phasizing ring constraints) to Description Logic languages.
These reductions follow the general pattern of the standard
translation of ORM to logic, and are not intended for effi-
cient execution. We are working on the problem from the
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opposite end, and it may be interesting to try to extend
ORM− when greater expressiveness is needed, rather than
to try to restrict larger fragments.

Wilmore and Embury [25] propose an intensional ap-
proach to database testing, which is closely related in spirit
to our test of constraint satisfiability. Nevertheless, they do
not address the fundamental undecidability of the language
they support, so their technique is heuristic, without a clear
understanding of its expressiveness and limitations.

Other database testing techniques, such as that of Deng
et al. [3], concentrate on producing test databases with ar-
bitrary values or after pruning illegal values through heuris-
tics. A more formal approach is followed by Neufeld et al.
[19]: constraints are translated into logic and a generator
specification is derived semi-automatically (user control may
be needed) from the logical formula. This approach is, again,
heuristic, in that it may not be able to produce appropri-
ate data. Nevertheless, it offers a way to handle complex
constraints in a unifying framework.

There is significant work in databases on the satisfiabil-
ity of different kinds of constraints. Fan and Libkin [6] ad-
dress XML document specifications with DTDs and integrity
constraints. Calvanese and Lenzerini study the interaction
between subtype and “cardinality” constraints [2]. (The lat-
ter correspond roughly to what we called “frequency” con-
straints in ORM.) Both of the above pieces of work are inter-
esting because they use integer constraints for some of their
formulations. Nevertheless, the kinds of constraints sup-
ported are significantly different from the ORM constraints
we tackled. For instance, a key element in the Calvanese
and Lenzerini work is that a subtype can refine the cardi-
nality constraint of its supertype. E.g., we can specify that
objects of type Person appear at least 3 times in some table,
yet objects of subtype Man can appear at most 5 times.

In terms of consistency reasoning for modeling languages,
UML is a common focus. UML is really a collection of
specification languages that cover many aspects of object-
oriented development—from problem specification over class
diagrams, to module interactions, to software deployment.
Egyed presents a fast technique for maintaining the consis-
tency of different UML diagrams [4]. Recent work also pro-
poses actions for fixing inconsistencies [18, 5]. Nevertheless,
neither the core problem we target (inconsistency under all
inputs) nor the kinds of constraints we support are closely
related to that work.

Alloy has been applied successfully in several other do-
mains. Warren et al. compile software architecture specifi-
cations to Alloy to check their consistency before performing
a proposed software architecture reconfiguration [24]. Khur-
shid and Jackson discovered bugs in the Intentional Naming
System (INS) by modeling and checking it with Alloy [16].
Finally, several translation schemes from Java to Alloy have
been proposed: Taghdiri’s [22] is a good example.
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