
Visualization-based Analysis of Quality
for Large-scale Software Systems

Guillaume Langelier∗ Houari Sahraoui Pierre Poulin

DIRO, Université de Montréal
Montréal, QC Canada

ABSTRACT
We propose an approach for complex software analysis based
on visualization. Our work is motivated by the fact that in
spite of years of research and practice, software development
and maintenance are still time and resource consuming, and
high-risk activities. The most important reason in our opin-
ion is the complexity of many phenomena related to soft-
ware, such as its evolution and its reliability. In fact, there is
very little theory explaining them. Today, we have a unique
opportunity to empirically study these phenomena, thanks
to large sets of software data available through open-source
programs and open repositories. Automatic analysis tech-
niques, such as statistics and machine learning, are usually
limited when studying phenomena with unknown or poorly-
understood influence factors. We claim that hybrid tech-
niques that combine automatic analysis with human exper-
tise through visualization are excellent alternatives to them.
In this paper, we propose a visualization framework that
supports quality analysis of large-scale software systems. We
circumvent the problem of size by exploiting perception ca-
pabilities of the human visual system.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, product metrics; D.1.5 [Programming Techniques]:
Object-oriented Programming; H.5.1 [Information Inter-
faces and Presentation]: Multimedia Information Sys-
tems

General Terms
Measurement, Experimentation, Human Factors

Keywords
Software visualization, quality assessment, metrics.

∗{langelig | sahraouh | poulin} @iro.umontreal.ca

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’05, November 7–11, 2005, Long Beach, California, USA.
Copyright 2004 ACM 1-58113-858-X/04/06 . . . $5.00.

1. INTRODUCTION
In spite of years of research and practice, software devel-

opment and maintenance are still time and resource consum-
ing, and high-risk activities [1, 6]. Object-oriented (OO) and
related technologies have improved significantly the ease of
development and maintenance. Indeed, OO has consider-
ably reduced the gap between user requirements and their
implementation in software. In practice however, the cost
and the risk remain high compared to the development and
the maintenance of other manufactured products. In our
opinion, this situation still occurs because many phenom-
ena related to software, such as its evolution and its re-
liability, are still too complex and less understood. This
is echoed by the fact that very limited theory can explain
them. It is therefore essential to better understand and
model these phenomena in order to increase our control on
the development and maintenance activities. In other scien-
tific fields, similar situations are addressed using empirical
research based on the classical cycle “observations, laws, val-
idation, theory”. As more and more large sets of software
data are accessible through open-source programs and open
repositories, we have now unique opportunities to empiri-
cally study these phenomena [5].

The idea of empirically studying phenomena related to
software is not new. Many studies have been conducted,
especially by the community of software measurement and
quality. However, in spite of several quality estimation/pre-
diction models published in the literature [2, 7], concrete
applications in industrial contexts are very rare.

The success to expect from the analysis of software data
sets depends on the analysis techniques themselves. Au-
tomatic analysis techniques, such as statistics and machine
learning, are usually limited when studying phenomena with
unknown or poorly-understood influence factors. This is the
case of software evolution and reliability for instance. We
claim that hybrid techniques that combine automatic anal-
ysis with human expertise are excellent alternatives that
should improve our understanding of software properties.

Visualization offers powerful tools to develop a better un-
derstanding of software quality. It allows automatic pre-
processing and presentation of the data in such way that a
human expert can identify complex regularities and discon-
tinuities that are usually associated with phenomena occur-
rences. Proper preprocessing and presentation are therefore
crucial to control the size and the significance of the studied
data. Indeed, expertise cannot be effective when large-scale
systems are observed. As an example, a UML class diagram
containing hundreds of classes is very difficult to effectively

214

analyze. In this context, we propose a visualization-based
approach for complex system analysis that circumvents the
problem of size by exploiting perception capabilities of hu-
man visual system.

The paper is organized as follows. Section 2 gives an
overview of our visualization framework. This framework
is uses two representation levels : class representation and
program representation. These two levels are respectively
detailed in Section 3 and Section 4. The application to our
visualization framework for three types of analysis tasks is
described in Section 5. An evaluation of our approach is
provided with an experimental study, and discussed in Sec-
tion 6. Finally in Section 7, we conclude with a discussion
on the contributions of our approach, its limitations, and
proposed improvements.

2. SOFTWARE VISUALIZATION
Visualizing large-scale software to understand both local

and global software properties is a very challenging task.
Therefore, the more convivial, efficient, flexible our frame-
work is, the more suitable it should become to analyze, un-
derstand, and explain software properties.

Four aspects of our visualization framework are described:
class representation (Section 3), program representation (Sec-
tion 4), navigation (Section 4.2), and data filtering (Sec-
tion 4.3). As our goal is to analyze large-scale programs, we
decided to focus on macro analysis (i.e., class as the basic el-
ement). Many previous software visualization systems have
concentrated on detailing classes into methods and variables
(see for example [12, 14]). They offer fine granularity views
of software that is important. These views could be con-
nected to our framework in order to complete the analyses.

A crucial decision when building visualization environ-
ments for a category of analysis tasks is to determine which
data to visualize and how. Too much data hides structural
understanding, and too little neglects potentially important
information. An image of cluttered data suffers from oc-
clusions, and a badly distributed/organized data possibly
hinders existing links. Finally, the human visual system has
studied strengths and weaknesses; good visualization must
exploit these natural skills to be successful.

More concretely, because of the intangible character of
software [11] and due to the nature of the targeted analysis
tasks, we decided to work with abstract information (met-
rics) extracted from code such as its size, cohesion, coupling,
etc. This data is mapped to graphical data such as color,
shape, size, orientation, etc., that can be easily perceived by
the human visual system.

3. CLASS REPRESENTATION

3.1 Representing the Intangible
Visualizing a program is not an easy task because of the

intangibility of code. In fact, code is intended to be under-
stood by humans and computers, and has no concrete reality
outside of these purposes. Medical imagery and mechanical
simulation are two examples that have real and precise ob-
jects to represent them in 3D. Similarly, people comparing
data associated with geographical areas in terms of any given
variable can directly map their natural coordinates to a sup-
port for their visualization. Unfortunately, it is impossible
to represent software in its original form because it does not
have any.

It is therefore necessary to represent code with some arbi-
trary figures. We decided to represent a class with a geomet-
rical 3D box. The box has a number of interesting features,
its simplicity being an important one. Indeed, a box can be
rendered very efficiently, thus allowing us to display a very
large number of such entities. This simplicity is also crucial
for human perception. Our brain analyzes a scene mainly
through quick pattern matching, allowing us to better rec-
ognize common forms. The straight, regular, and familiar
lines of the box are therefore processed very quickly. This
efficiency saves more time for the analysis of other box char-
acteristics such as color, size, and twist.

Our framework currently uses only these three charac-
teristics. Although we experimented with other box char-
acteristics, the results were not as significant. The more
graphical attributes we introduced, the more interferences
they created on each other, or the more difficult it became
to efficiently distinguish differences when a large number
of stimuli interacted on the display. Nevertheless, choosing
the right amount of information to display is a difficult task,
and we are still investigating adding significant dimensions
to our graphical representations.

3.2 Software Metrics
Software metrics are powerful tools to link a class with a

representation, in our case a 3D box. Firstly, software met-
rics have quantitative values that can be easily manipulated.
Therefore it is possible to apply more powerful statistics on
them, as well as straightforward transformations on their
values (Section 3.3). Secondly, the metric model is ideal for
the primary goal of our research: the understanding and
evaluation of software quality.

In order to accurately represent a class, we identified four
characteristics that we considered relevant to the study of
software quality: coupling, cohesion, inheritance, and size-
complexity. Several implicit or explicit software design prin-
ciples involve these characteristics. For example, it is well
accepted amongst the software engineering community that
software should demonstrate low coupling and high cohe-
sion. Size and complexity are also relevant to quickly iden-
tify important classes or to analyze whether a class is too
complex and needs refactoring.

The selected characteristics are captured throughout met-
rics. Many of them were proposed in the literature. For
example, coupling can be measured by CBO (Coupling Be-
tween Objects), cohesion by LCOM5 (Lack of COhesion in
Method), inheritance by DIT (Depth in Inheritance Tree),
and size-complexity by WMC (Weighted Methods per Class)
[4]. In the remaining of this paper, we use some of these
metrics to illustrate our framework.

3.3 Merging Boxes and Classes
Now that we have decided which characteristics we want

to represent and have identified interesting graphical fea-
tures, we need to determine a correspondence (mapping)
between these two sets. A mapping will have a direct impact
on the quality of analysis, and depends on the type of analy-
sis tasks we want to perform. While our choice in this paper
has been motivated by a number of factors, nothing prevents
us to customize an arbitrary mapping by linking any met-
ric with anyone of the graphical characteristics. Hence as
an example for our tasks, color, twist, and size are matched
respectively to the CBO, LCOM5, and WMC metrics.

215

The type of metrics has also to match feature properties.
In our context, color is a continuous linear scale in hue from
blue to red. Classes with low CBO are displayed in blue
while those very coupled appear in flashy red; an average
CBO results in variants of purple. Twist rotates the 3D box
in the plane between 0 and 90 degrees. Classes with low
LCOM5 (i.e., very cohesive) are presented as very straight
boxes while classes with high LCOM5 lie horizontally. Fi-
nally, classes with high WMC are presented as tall boxes
and classes with low WMC as small boxes. Size and twist
are also continuous and linear. Three examples of class rep-
resentations are illustrated in Figure 1.

Figure 1: Three class representations: All three
metrics (CBO, LCOM5, and WMC) are in-
creasing in value from left to right. Note:
most figures in this paper should be viewed in
color to better understand their perceptual val-
ues. They can be accessed from the website
www.iro.umontreal.ca/∼labgelo/publication material/ase05

This particular mapping is not arbitrary. In addition to
provide good perceptual qualities, it has some sort of se-
mantic meaning. Indeed, high coupling is considered bad in
software development, and it is generally accepted that the
color red means danger. So the presence of red in an area
of the visualization can be interpreted as a possible dan-
ger represented by that portion of code. Also, twist is well
suited for cohesion representation. Again, the association of
being straight with coherence and correctness is generally
well accepted. A twisted box appears more chaotic, which
is very similar to the behavior of a non-cohesive class. The
match between size and WMC is rather obvious because the
concept of code size and box size are naturally related in
everyone’s mind.

4. PROGRAM REPRESENTATION

4.1 Layout Techniques
There is no natural way to distribute all the elements of a

software system on a plane. Geographical information sys-
tems (GIS) use maps to represent certain variables concern-
ing a given territory [13] (an example is shown in Figure 2).
Similarly, we decided to develop a map representation for a
system. Software architectural information provides a good
way to construct separations equivalent to country borders,

states, cities, etc. Moreover, architecture represents valu-
able information on the quality and for the understanding
of software.

Figure 2: GIS representation: Typhoon conditions
across Southeast Asia during Summer 1997 [9].

Classes are included in packages that may also be included
recursively in other packages. These hierarchical groups of
elements can be separated in areas and therefore, simulate
a form of geographical map. This configuration helps to
identify which portions of code display abnormal values or
amounts of a given characteristic. We have currently de-
veloped two different types of class layout: Treemap and
Sunburst. The details on these two layout techniques fol-
low in the next sections, and an experiment evaluating their
respective efficiency is described in Section 6.

4.1.1 Treemap
Treemap was introduced by Johnson and Shneiderman [10]

to visually represent a file system. This was an important
tool to visualize offenders in the recurrent problems of disk
space shortage common at that time. The original Treemap
starts with a rectangle that represents the root of a hier-
archy. This rectangle is split in a number of vertical slices
equal to the number of its children. Each slice has a width
proportional to the size of its node. These new rectangles
(slices) are then split horizontally the same way. The split-
ting process goes on, alternating between vertical and hori-
zontal separations. This algorithm, called slice-and-dice, is
illustrated in Figure 3.

The Treemap representation must be adapted to a repre-
sentation suitable for software structures. Indeed, Treemap
uses continuous values while because our software basic ele-
ment is the class with a discrete representation, we need to
allow each entity to appear without interference. Therefore
regions of space have to be an integer factor of this basic
element spatial requirements, horizontally as well as verti-
cally. This spatial requirement corresponds to the distance
that must separate two elements (3D boxes) of the largest
observed dimensions (sizes). The size of a node corresponds
to the total number of classes contained in its sub-tree.

Our solution splits the Treemap with the original slice-
and-dice algorithm, but rounds up the number of elements
in order to fit in a rectangular slice. During the recursive
construction of each sub-node, it may be impossible to fit
its representation within its allocated rectangle. This occurs
when many subdivisions cause a difference in the amount of

216

Figure 3: Original 2D Treemap representation of
census data.

space needed. We then extend the original rectangle possi-
bly in both directions to respond to the increased required
space, and refit these elements in the new increased rect-
angle. This is illustrated in the middle of Figure 4. When
determining the original subdivisions in (A), the classes fit
in the two rectangles. However when traversing the hier-
archy in (B), the new subdivisions cannot be entirely filled
with classes, and therefore new space is required. The orig-
inal rectangle is then extended in (C) to accommodate for
the new distribution of elements, but empty spaces (marked
with X) are created.

In order to reduce the problems related to these empty
spaces, we search for the perfect solution, considering we
have a discrete treemap. We scan all possibilities at each
level of the hierarchy and keep the arrangement that min-
imizes the number of holes. We get an imposed size from
the upper level and then try a size in the opposite direction
at the current level (which becomes the imposed size for
its sub-level). This is obviously done in exponential time.
Although, we added a few simple changes such as caching
of solutions for a given pair (node,size) and a dichotomist
search when trying sizes on current level. We managed to
reduce the processing time to under 8 seconds for a system of
5000 classes. This takes 51 seconds on the 10000 and more
classes of Eclipse. The large number of sub-packages are
more to blame than the number of classes in this case. Al-
though the number of holes seems to decrease significantly,
the user overall feeling is rarely affected by the reduction.

An example of our Treemap subdivision is presented in
Figure 5 (top).

4.1.2 Sunburst
We also adapted another layout technique to represent the

architectural properties of a software system. The principle
is the same as above. The space-filling algorithm is inspired

Figure 4: Illustration of converting a software hier-
archy in our adapted Treemap and Sunburst tech-
niques.

by Sunburst, introduced by Stasko [17] (Figure 6). This
algorithm builds a circular distribution of a hierarchy, and
its primary purpose was again to visualize large file systems
in 2D. It separates sibling nodes radially (by angles), and
levels in the hierarchy by arcs at distances from the disk
center. A navigation system with interactive zooming was
also developed in the original tool.

As with our adaptation of the Treemap algorithm, we fill
the circular space covered by Sunburst with class represen-
tations. Two classes must be separated by at least the ba-
sic distance necessary between two representations of the
largest 3D box. Radial separators are used to graphically
divide sibling packages.

As an example, starting from the root of the system archi-
tecture, assume a package contains 10% of all classes in the
system. A 36-degree slice is thus allocated in the Sunburst
circular representation. All the classes at this package level
are distributed in the slice along an arc and then along the
increased radius. If there are sub-packages in the package,
an arc separator is drawn to separate the sub-packages from
the classes, and radial separators are drawn according to the
number of classes each sub-package contains.

The bottom of Figure 4 explains how a simple hierarchy is
represented. In (A), the disk is divided in two slices, one for
2 classes (120 degrees) and one for 4 classes (240 degrees). In
(B), the two classes are distributed along its corresponding
arc. In (C), 3 sub-packages are first generating two radial
separators, and the 2, 1, 1 classes are distributed along their
respective arcs.

A result is illustrated in Figure 5 (bottom).

4.1.3 Holes in Both Representations
Unfortunately, our adaptations to both Treemap and Sun-

217

Figure 5: (Top) Modified Treemap technique and (bottom) modified Sunburst technique as displayed in our
framework. They both represent PCGEN, a tool for character generation in RPG (1129 classes).

218

Figure 6: Original 2D Sunburst representation of a
file system.

burst can still result in the insertion of holes in the repre-
sentations. In simple illustrations such as in Figure 4, this
looks like a serious problem. However, our framework is de-
signed to study systems made of hundreds and thousands of
elements. In fact, in the average cases (real softwares) that
we tested, it did not prove a problem at all in our visualiza-
tion. Figure 5 is very representative of typical softwares we
studied.

4.2 Navigation
Although, our system is designed for immediate detection

of patterns and structures, navigation through the graphi-
cal entities associated with the software metrics proved very
useful to investigate details that may not have appeared
otherwise. Navigation is also important to prevent mutual
occlusions between opaque 3D boxes, since we operate in a
3D world. Our camera model is general enough to provide
experts as much freedom as possible: it can move in any
direction on and above the plane, it can zoom in and out,
and can change the field of view. The camera also uses a few
constraints to improve efficiency: it is constantly directed to
the plane where the graphical entities are displayed, and it
can be rotated on an hemisphere around any selected view-
point.

4.3 Filters
For some analysis tasks, it is important to focus on a sub-

set of elements while keeping a global view. We will see an
example of such an analysis task in the following section.
In this perspective, we use filters to put emphasis on use-
ful elements, or to reduce the visual importance of useless
elements, for instance, by removing their color. Two differ-
ent categories of filters have been implemented. The first
one deals with the distribution of the metric values. For
example, we can focus on classes that have extreme values

for a particular metric by changing their color to red and
by giving the color green or yellow to the others (Figure 7).
Extreme values are detected using classical statistical tech-
niques such as plot boxes. The second category of filters
exploits structural information. In addition to metrics, our
environment allows to extract UML relations such as asso-
ciations, aggregations, and generalizations. For a particular
class, the expert can view only classes that are related to it
by a particular type of link (Figure 8).

Figure 7: Extreme values for CBO are presented
in red. It displays a part of JRE 1.4.04 from Sun
Microsystems.

Figure 8: An example of the association filter: Only
classes associated with the class circled in green re-
mained in color.

5. ANALYSIS TASKS
In order to study the effectiveness of our framework, we

tested it on three categories of software analysis tasks: detec-
tion of design principle violation, architecture understand-
ing, and evolution analysis. We briefly present each category
in the following sections.

219

5.1 Design Principle Violation Detection
One of the most well-known and important principle in

quality analysis is the fact that code should always exhibit
low coupling and high cohesion. However, this fundamental
principle is very difficult to verify because finding threshold
values and trade-offs between coupling and cohesion is very
context-dependent. Using our framework, an expert can es-
timate whether a portion of the code violates this principle
by taking into account the global context of the program.
The violation can be detected at the class, package, and
program levels without a need for aggregating the data (av-
erages, median, etc.). Figure 9 shows an example of such a
situation in our framework.

Figure 9: The predominantly red appearance indi-
cates that the coupling in this program seems to
have grown out of proportion. Maybe all this cou-
pling is not essential. It represents ArtOfIllusion, a
full featured 3D modeling, rendering, and animation
studio (523 classes).

Another interesting analysis in this category is the detec-
tion of anti-patterns. Anti-patterns are known to be bad
coding practices that may cause problems in subsequent de-
velopment phases. An example of anti-pattern detectable by
our framework is the Blob [3]. A Blob is an enormous accu-
mulation of code in very few classes containing many com-
plex methods. This anti-pattern is often caused by object-
oriented code used in the context of procedural needs, or
from inexperienced developers. In the context of the map-
ping proposed in Section 3.1, a Blob can easily be spotted in
our framework. It appears as a twisted and tall box linked
to small boxes. A Blob can be detected by applying a filter
that reveals classes with an abnormal size-complexity value.
Then, when one of these classes is selected, we apply on it
a filter that identifies the classes related to it. If these re-
lated classes are all small, there is a high probability that
we found a Blob. The detection can be more efficient if we
modify the mapping with the DIT metric. Indeed, classes
playing a role in the Blob anti-pattern are generally not deep
in the inheritance tree. By associating colors to the DIT, it
is easier to focus on classes wiht a small DIT value.

5.2 Functional Architecture Understanding
A graphical representation of a system is a good cognitive

support to the understanding of programs. Indeed, the role
of each class in the program has an impact on its metrics.

For example, kernel packages contain a large proportion of
complex classes with high coupling. In the mapping of Sec-
tion 3.1, these classes are large and red. Similarly, most util-
ity packages contain a large proportion of complex classes
with medium-to-low coupling (large and purple). Without
any additional (semantic) information to code, the expert
can glance at our representation and have a quick evalua-
tion of the vocations of the packages, which can ease his
understanding. In Figure 10 for example, the package Pc-
Gen.core contains mainly red, large, and twisted classes.
This gives an indication that this package is the kernel of
the program, which is the case for PcGen. In the same ex-
ample, PcGen.Gui.Editor contains many blue/purple, large,
and twisted classes. Utility packages have usually the same
shape. Finally, Gmgen.plugingmgr.messages contains a ma-
jority of blue, small, and straight classes. Classes defining
types correspond to this description. In the context of Pc-
Gen, this package contains message types.

Figure 10: An example of the correspondence be-
tween visual patterns and package types.

5.3 Evolution Analysis
An important contribution of our framework regards soft-

ware evolution analysis. We can analyze the evolution of a
single class as proposed by Lanza and Ducasse [12], or pack-
age/program evolution. In the first case, we can observe the
evolution pattern of a class and deduce its next evolution
stages. For example, some evolution patterns are synony-
mous to dead-code classes. In the case of package/program
evolution, we can observe the representation of multiple ver-
sions of the same package/program (see for example Fig-
ure 11). The evolution can reveal low quality packages and
determine when a major refactoring is needed.

6. EVALUATION
To evaluate some aspects of our approach, we conducted

an experimental study. We describe the elements of this
study in the remaining of this section.

6.1 Experiment Objectives
We mainly target two objectives. First, we evaluate if

the time needed to perform some analysis tasks compares

220

Figure 11: Representation of the evolution, from left to right, of a package over 23 versions. It represents
Quantum, a database access plugin for Eclipse (689 classes).

favorably to using today’s popular tools. This can also help
us identify weaknesses in our framework.

Second, we will assess the effectiveness of layout tech-
niques. Does sophisticated layout ease analysis tasks com-
pared to a näıve layout? If so, which layout should be used in
which context (Treemap vs. Sunburst)? Indeed, the design
of efficient layout techniques is time consuming. While our
proposed adaptations appear satisfying, there is still room
for improvements, mainly to better exploit the entire display
space, while preserving architectural information. However
at this stage of our research, we need to verify if the effort
needed for this improvement is justified.

The objective of this study is not to rigorously compare
our visualization framework to other frameworks or to other
analysis techniques. Although such a comparison is suitable,
it is difficult to conduct a controlled experiment consider-
ing the diversity of the analysis tasks supported by existing
tools. However, such an experiment remains one of our fu-
ture objectives.

6.2 Experiment Settings
In this experiment we use three layout techniques: Treemap,

Sunburst, and for comparison purposes, a näıve layout tech-
nique called Treeline.

Treeline represents classes of the architecture hierarchy
with a depth-first algorithm. Each time we meet a node in
the architecture tree, we place it on the current row, dis-
tributing the elements from left to right. Levels and pack-
ages are determined with separators, with a given separa-
tor color for each level of the hierarchy. So when the color
switches, the following classes are in a different level. When
the separator color remains the same, the next package is a
sibling. This algorithm has an optimal use of the space and
is easy to implement/execute. An example of this layout
technique is presented in Figure 12.

The experiments are run in the form of an electronic ques-
tionnaire with 20 analysis tasks. Two types of knowledge are
needed to perform the tasks: class characteristics and pro-
gram architecture. 5 tasks involve exclusively the first type
of knowledge, 5 tasks involve the second type, and 10 tasks
involve both types. Task definition is inspired by the types
we described in Section 5. For example, one task is to iden-
tify large packages that contain almost exclusively highly
cohesive classes. Each task had to be performed on a differ-
ent program, taken from different application domains, and
with sizes ranging from 72 to 1662 classes. For instance, the

Figure 12: Example of the Treeline algorithm. It
represents EMMA, a tool for measuring coverage of
Java software (286 classes).

task given as training used the associated program JDK 1.1
(1662 classes).

The time taken by a subject to correctly perform the task
is automatically recorded. In addition to the 20 tasks, sub-
jects were asked questions about their subjective rating of
the layout techniques. We used 15 subjects (graduate stu-
dents) divided into 3 groups of 5 subjects. For each analysis
task, subjects of each group are asked to perform the task
using one of the three layout techniques (Treemap for group
A, Sunburst for group B, and Treeline for group C). To avoid
fatigue and learning effect biases, the assignation of a layout
technique to a group is random and changed with the tasks.
The order of tasks for subjects from the same group is also
random. For each pair (task:layout), we computed the av-
erage time of the 5 subjects. We used the computed value
to rank the techniques for each task. Then, for each layout
technique, we calculated the average and the median for all
tasks.

Subjects are volunteers. Their motivation should not be
biased by any form of evaluation. Most of them are software
engineering researchers. To avoid significant differences be-
tween them, they received a quick training on the environ-
ment before the experiment. They learned how classes and

221

packages are represented within each layout technique, how
to navigate in this 3D space, and finally how to perform the
tasks and record time.

6.3 Results
At the end of the experiment, we obtained 300 time en-

tries (20 tasks × 15 subjects). All the subjects gave correct
answers within the allowed time. The compiled results are
presented in Table 1.

Sunburst Treemap Treeline

Average Time (sec.) 50.13 36.38 69.88
Median Time (sec.) 23.87 22.24 41.24

Best Time 35% 55% 10%
Preferred System 80% 13.33% 6.66%

Table 1: Experiment Results

As expected, the average and median times confirm that
our visualization framework allows to perform relatively com-
plex analysis tasks on small-to-medium size programs in less
than one minute. For example, it took 50 seconds on aver-
age to identify large cohesive packages in a program with
1662 classes (see Section 6.2). On one hand, performing the
same task manually using only code and tables of metric
values would probably take significantly much more time.
On the other hand, the solution of writing a program that
executes this task poses two problems. First, it is difficult
to determine what large and cohesive means without having
a way to appreciate the context. Second, even if this is pos-
sible, an expert has to write a program each time he wants
to investigate a new analysis task.

The second interesting finding in this experiment is that
sophisticated layout techniques play an important role in the
analysis tasks. Indeed, both Treemap and Sunburst have an
average time lower than the one for Treeline. The difference
is more significant when we consider median values (reduc-
tion of almost 50%). Treeline obtained the best time only
twice over 20 tasks. When we examined these two tasks, we
noticed that in both cases, the classes/packages of interest
were displayed immediately in the middle of the represen-
tation. This gives an advantage to Treeline, knowing that
for these two cases the situation was completely different for
the other two layouts.

The other objective of the experiment is to determine
which layout technique is the most useful. Our results re-
vealed that Treemap and Sunburst have almost the same av-
erage and median times. However, Treemap seems to have
a slight advantage; it was ranked as first for 11 tasks (55%)
while Sunburst was ranked first for 7 tasks (35%). We tried
to explain this difference. After looking at the task descrip-
tions where sunburst was rated second, it appears that most
of them involved cohesion, and by extension, twist (in this
experiment, cohesion is mapped to twist). Sunburst has dif-
ficulty to deal with twist. In Treemap, the packages are
represented as squares; any twist of a class is quickly per-
ceived. This is not the case for Sunburst.

For the subjective rating of the questionnaire, all subjects
enjoyed their participation to the experiment and mentioned
that the framework is useful in quality analysis. Many sug-
gested some improvements to the navigation. Regarding
their preference for layout techniques, surprisingly, 12 of 15
subjects (80%) mentioned Sunburst. This result is signifi-

cantly different from the one observed for the tasks. This
is a little puzzling. A possible explanation is that Sunburst
appears to many people as more aesthetic and harmonic al-
though these qualities are not in our opinion useful in soft-
ware quality analysis and understanding.

7. CONCLUSION
In this paper, we have presented a visualization frame-

work for quality analysis and understanding of large-scale
software systems. It exploits perception capabilities of the
human visual system to help quality-model developers un-
derstanding software-related phenomena and quality ana-
lysts evaluating large and complex programs. Programs are
represented using metrics. Moreover, structural information
is considered to help experts focus on a part of the program
by the mean of filters.

We claim that our semi-automatic approach is a good
compromise between fully automatic analysis techniques that
can be efficient, but loose track of context, and pure human
analysis that is slow and inaccurate. Our framework can
be used for targeted analysis tasks as well as for more ex-
ploratory ones, which is more interesting in the complex
domain of software engineering.

The experiment we conducted showed that our class and
program representations are effective for complex analysis
tasks. The more sophisticated is a layout technique, the
easier to perform are the analysis tasks.

We used our framework to visualize and analyze programs
containing up to 10000 classes without lost of performance.
However, for some programs, layout techniques do not have
an optimal use of the display space. This case occurs when
programs contain many packages with very few classes. Al-
though these cases are rare, we are currently working on an
improved version of these techniques. Another limitation
of our approach is related to the evolution analysis. We
cannot concurrently display multiple versions of large-scale
programs. We are working on different possibilities to com-
pare multiple versions. These possibilities include sliders
and animation.

Finally, we are investigating the interpretation of meta-
phors to add a new level of knowledge in the analysis [8].
Metaphors are powerful means to transfer knowledge from
a well-known domain to another one [15]. We are focusing
on the city metaphor [16]. There are several similarities be-
tween a city and a program from the complexity perspective.
Classes can be viewed as buildings and packages as districts.
The box-based representation and layout techniques add to
this similarity as observed in several figures in this paper.
One objective of this investigation is to see if the shape of
a class can determine its function in a program exactly as
for a building in a city (houses, factories, business build-
ings, etc.). The same idea can be applied to packages. A
package role can be determined by the role of the classes it
contains. In a city, districts have vocations that derive from
the nature of the buildings they contain (residential district,
industrial district, business district, etc.). Early results ap-
pear promising.

8. ACKNOWLEDGEMENTS
The authors thank FQRNT and NSERC for their con-

tinuing financial support. All participants to the reported
study deserve a special mention. Finally Karim Dhambri

222

contributed to this work with his implementation of filters
in our framework.

9. REFERENCES
[1] D. Bell. Software Engineering, A Programming

Approach. Addison-Wesley, 2000.

[2] L.C. Briand and J. Wuest. Empirical studies of quality
models in object-oriented systems. In Advances in
Computers, 56. Academic Press, 2002.

[3] W.J. Brown, R.C. Malveau, H.W. McCormick, III,
and T.J. Mowbray. AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis. John
Wiley Press, 1998.

[4] S.R. Chidamber and C.F. Kemerer. A metric suite for
object oriented design. IEEE Transactions on
Software Engineering, 20(6):293–318, June 1994.

[5] A. Endres and D. Rombach. A Handbook of Software
and Systems Engineering. Addison-Wesley, 2003.

[6] D. Hamlet and J. Maybee. The Engineering of
Software. Addison-Wesley, 2001.

[7] N.E. Fenton and M. Neil. Software metrics: roadmap.
In ICSE - Future of SE Track, pages 357–370, 2000.

[8] H. Graham, H.Y. Yang, and R. Berrigan. A solar
system metaphor for 3D visualisation of object
oriented software metrics. In Australasian Symposium
on Information Visualisation, pages 53–59, 2004.

[9] C.G. Healey and J.T. Enns. Large datasets at a
glance: Combining textures and colors in scientific
visualization. IEEE Transactions on Visualization and
Computer Graphics, 5(2):145–167, 1999.

[10] B. Johnson and B. Shneiderman. Treemaps: A

space-filling approach to the visualization of
hierarchical information structures. In IEEE
Visualization, October 1991.

[11] C. Knight and M. Munro. Virtual but visible software.
In Proceedings of the International Conference on
Information Visualisation, pp. 198-205, July 2000.

[12] M. Lanza and S. Ducasse. A categorization of classes
based on the visualization of their internal structure:
the class blueprint. In Proceedings of OOPSLA 2001
(16th International Conference on Object-Oriented
Programming, Systems, Languages, and Applications),
pages 300–311. ACM Press, 2001.

[13] A.M. MacEachren. How Maps Work: Representation,
Visualization and Design. Guilford Press, New York,
1995.

[14] A. Marcus, L. Feng, and J.I. Maletic. 3D
representations for software visualization. In SoftVis
’03: Proceedings of the 2003 ACM Symposium on
Software Visualization, pages 27–36, 2003. ACM Press.

[15] L. Mason. Fostering understanding by structural
alignement as a route to analogical learning.
Instructional Science, 32(6):293–318, November 2004.

[16] T. Panas, R. Berrigan, and J. Grundy. A 3D
metaphor for software production visualization. In
Proceedings of the International Conference on
Information Visualization, pp. 314-319, 2003.

[17] J. Stasko and E. Zhang. Focus+context display and
navigation techniques for enhancing radial,
space-filling hierarchy visualizations. In INFOVIS ’00:
Proceedings of the IEEE Symposium on Information
Visualization 2000, pp. 57-68, 2000. IEEE Computer
Society.

223

