
Combined Static and Dynamic Mutability Analysis

Shay Artzi Adam Kie.zun David Glasser Michael D. Ernst
MIT Computer Science and Artificial Intelligence Laboratory

{artzi,akiezun,glasser,mernst}@csail.mit.edu

Abstract
Knowing which method parameters may be mutated during a method’s
execution is useful for many software engineering tasks. We present
an approach to discovering parameter reference immutability, in
which several lightweight, scalable analyses are combined in stages,
with each stage refining the overall result. The resulting analysis is
scalable and combines the strengths of its component analyses. As
one of the component analyses, we present a novel, dynamic muta-
bility analysis and show how its results can be improved by random
input generation. Experimental results on programs of up to 185
kLOC show that, compared to previous approaches, our approach
increases both scalability and overall accuracy.

Categories and Subject Descriptors: D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques—Object-oriented programming;

General Terms: Algorithms, Design, Documentation, Experimen-
tation, Languages

Keywords: readonly, reference immutability

1. Introduction
Knowing which method parameters are accessed in a read-only

way, and which ones may be mutated, is useful in many software
engineering tasks, such as modeling [8], verification [37, 9], com-
piler optimizations [11, 33], program transformations such as refac-
toring [20], test input generation [2], regression oracle creation [23,
40], invariant detection [18], specification mining [13], program
slicing [39], and program comprehension [17, 15].

Previous work has employed static analysis techniques to detect
immutable parameters. Computing accurate static analysis approx-
imations threatens scalability, and imprecise approximations can
lead to weak results. Dynamic analyses offer an attractive comple-
ment to static approaches, both in not using approximations and in
detecting mutable parameters.

This paper presents an approach to mutability detection that com-
bines the strengths of static and dynamic analyses. In our approach,
different analyses are combined in stages, forming a “pipeline”,
with each stage refining the overall result. The resulting analysis
is more accurate and more scalable than previous approaches.

This paper makes the following contributions:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’07 November 5–9, 2007, Atlanta, Georgia, USA.
Copyright 2007 ACM 978-1-59593-882-4/07/0011 ...$5.00.

• The first staged analysis approach for discovering parameter
mutability. Our staged approach is unusual in that it combines
static and dynamic stages and it explicitly represents analysis
incompleteness. The framework is sound, but an unsound anal-
ysis may be used as a component, and we examine the tradeoffs
involved.

• Mutability analyses. We present a novel dynamic analysis that
scales well, yields accurate results (it has a sound mode as
well as optional heuristics), and complements other analyses.
We extend the dynamic analysis with random input generation,
which improves the analysis results by increasing code cover-
age. We explore a new point in the space of static techniques
with a simple but effective static analysis.

• Evaluation. We have implemented our framework and analy-
ses for Java, and we investigate the costs and benefits of vari-
ous sound and unsound techniques, including both our own and
that of Sălcianu and Rinard [34]. Our results show that a well-
designed collection of fast, simple analyses can outperform a
sophisticated analysis in both scalability and accuracy.

The remainder of this paper is organized as follows. Section 2
describes the problem of inferring parameter mutability and illus-
trates it on an example. Section 3 presents our staged mutability
analysis. Sections 4 and 5 describe the dynamic and static mutabil-
ity analyses that we developed as components in the staged anal-
ysis. Section 6 describes the experimental evaluation. Section 7
surveys related work, and Section 8 concludes.

2. Parameter Reference Immutability
The goal of parameter mutability analysis is the classification of

each method parameter (including the receiver) as either reference-
mutable or reference-immutable.

Informally, reference immutability guarantees that a given refer-
ence is not used to modify its referent. Parameter p of method m
is reference-mutable if there exists an execution of m in which p is
used to mutate the state of the object pointed to by p. Parameter p
is said to be used in a mutation, if the left hand side of the mutating
assignment was obtained during the given execution via a series of
field accesses and copy operations from p. If no such execution
exists, the parameter p is reference-immutable. For example, in the
following method:
void f(C c) {

D d = c.d;
E e = d.e;
e.f = null;

}

parameter c is used in the mutation in the last statement since the
statement is equivalent to c.d.e.f = null.

The state of an object o consists of the values of o’s primitive
fields (e.g., int, float) and the states of all objects pointed to by

104

1 class C {
2 public C next;
3 }
4

5 class Main {
6 void modifyParam1(C p1, boolean doIt) {
7 if (doIt) {
8 p1.next = null;
9 }

10 }
11

12 void modifyParam1Indirectly(C p2, boolean doIt) {
13 modifyParam1(p2, doIt);
14 }
15

16 void modifyAll(C p3, C p4, C p5, boolean doIt) {
17 p4.next = p3;
18 C c = p5.next;
19 c.next = null;
20 modifyParam1Indirectly(p5, doIt);
21 }
22

23 void doNotModifyAnyParam(C p6) {
24 if (p6.next == null)
25 System.out.println("p6.next is null");
26 }
27 void doNotModifyAnyParam2(C p7) {
28 doNotModifyAnyParam(p7);
29 }
30 }

Figure 1: Example code that illustrates our staged approach to pa-
rameter immutability. All non-primitive parameters other than p6

and p7 are mutable.

o’s non-primitive fields. The mutation may occur in m itself or
in any method that m (transitively) calls. Array accesses are treated
analogously to fields. Throughout this paper two objects are aliased
if the intersection of their states contains at least one non-primitive
object (the same object is reachable from both of them).

Previous work has mostly given informal definitions of immutabil-
ity, like the above. A companion technical report [3] gives the first
formal definition of reference immutability that accounts for pa-
rameter aliasing.

By contrast to reference immutability, object immutability in-
dicates whether a specific object may be changed, via any refer-
ence. Among other uses, reference immutability is more useful
for reasoning about method calls and for distinguishing between
acceptable and unacceptable modifications. Reference immutabil-
ity can be combined with aliasing information to compute object
immutability [7, 34]. The rest of this paper uses mutable and im-
mutable to refer to reference mutable and reference immutable, re-
spectively.

2.1 Example
In the code in Figure 1, parameters p6 and p7 are reference-

immutable, and parameters p1 − p5 are reference-mutable, since
there exists an execution of their declaring method such that the
object pointed to by the parameter reference is modified via the
reference.
immutable parameters:
• p6 and p7 are reference-immutable. No execution of either

method doNotModifyAnyParam or doNotModifyAnyParam2
can modify an object passed to p6 or p7.

mutable parameters:
• p1 may be directly modified in modifyParam1 (line 8).
• p2 is passed to modifyParam1, in which it may be mutated.
• p3 is mutable because the state of the object passed to p3 can

get modified on line 19 via p3. This can happen because p4 and

p5 might be aliased; for example, in the call modifyAll(x1,
x2, x2, false). In this case, the reference to p3 is copied into
c and then used to perform a modification on line 19.

• p4 is directly modified in modifyAll (line 17). Note that line 17
does not modify p3 or p5, because the mutation occurs via ref-
erence p4. This paper is concerned with reference-(im)mutability
rather than object-(im)mutability and thus the reference via which
the modification happens is significant.

• p5 is mutable because line 19 modifies p5.next.next.

Our dynamic and static analyses complement each other to clas-
sify parameters into mutable and immutable, in the following steps:

1. Initially, all parameters are unknown.
2. A flow-insensitive, intra-procedural static analysis classifies p1,

p4, and p5 as mutable. The analysis classifies p6 as immutable—
there is no direct mutation in the method and the parameter does
not escape.

3. An inter-procedural static analysis propagates the current clas-
sification along the call-graph and classifies p2 as mutable since
it is passed to an already known mutable parameter, p1. It also
classifies parameter p7 as immutable since it can only be passed
to immutable parameters.

4. A dynamic analysis classification of p3 depends on the given
example execution. The dynamic analysis classifies p3 as mu-
table if a method (similar to the main method below)
void main() {

modifyAll(x1, x2, x2, false);
}

is supplied or generated (see Section 4.4). Otherwise the dy-
namic analysis classifies p3 as unknown.

Our staged analysis correctly classifies all parameters in Fig-
ure 1. However, this example poses difficulties for purely static
or purely dynamic techniques. On the one hand, static techniques
have difficulties correctly classifying p3. This is because, to avoid
over-conservatism, static analyses often assume that on entry to a
method all parameters are fully un-aliased, i.e., point to disjoint
parts of the heap. In our example, this assumption may lead such
analyses to incorrectly classify p3 as immutable (in fact, Sălcianu
uses a similar example to illustrate the unsoundness of his analy-
sis [33, p.78]). On the other hand, dynamic analyses are limited
to a specific execution and only consider modifications that happen
during that execution. In our example, a purely dynamic technique
may incorrectly classify p2 as immutable if during the execution,
p2 is not modified.

3. Staged Mutability Analysis
In our approach, mutability analyses are combined in stages,

forming a “pipeline”. The input to the first stage is the initial clas-
sification of all parameters (typically, all unknown, though param-
eters declared in the standard libraries may be pre-classified). Each
stage of the pipeline refines the results computed by the previous
stage by classifying some unknown parameters. Once a parameter
is classified as mutable or immutable, further stages do not change
the classification. The output of the last stage is the final classifica-
tion, in which some parameters may remain unknown.

Combining mutability analyses can yield an analysis that has bet-
ter accuracy than any of the components. For example, a static
analysis can analyze an entire program and can prove the absence
of a mutation, while a dynamic analysis can avoid analysis approx-
imations and can prove the presence of a mutation.

Combining analyses in a pipeline also has performance benefits—
a component analysis in a pipeline may ignore previously classified

105

Analysis Name Section i-sound m-sound
dynamic D 4.2 X* X
dynamic heuristic A DA 4.3 - X
dynamic heuristic B DB 4.3 X* -
dynamic heuristic C DC 4.3 X* -
dynamic heuristics A,B,C DH 4.3 - -
static intraprocedural S 5.2 X -
static intraprocedural heuristic SH 5.2.1 - -
static interproc. propagation P 5.3 X X†
JPPA [34] J 6.2 - X*
JPPA + main JM 6.2 - X*
JPPA + main + heuristic JMH 6.2 - -

Figure 2: The static and dynamic component analyses used in our
experiments. ”X*” means the algorithm is trivially sound, by never
outputting the given classification. “X†” means the algorithm is
sound but our implementation is not.

parameters. This can permit the use of techniques that would be too
computationally expensive if applied to an entire program.

The problem of mutability inference is undecidable, so no anal-
ysis can be both sound and complete. An analysis is i-sound if
it never classifies a mutable parameter as immutable. An analysis
is m-sound if it never classifies an immutable parameter as muta-
ble. An analysis is complete if it classifies every parameter as either
mutable or immutable.

In our staged approach, analyses may explicitly represent their
incompleteness using the unknown classification. Thus, an analysis
result classifies parameters into three groups: mutable, immutable,
and unknown. Previous work that used only two output classifica-
tions [31, 29] loses information by conflating parameters/methods
that are known to be mutable with those where analysis approxi-
mations prevent definitive classification.

Some tasks, such as many compiler optimizations [11, 33] re-
quire i-sound results (unless the results are treated as hints or are
used online for only the current execution [41]). Therefore, we have
i-sound versions of our static and our dynamic analyses. However,
other tasks, such as test input generation [2], can benefit from more
complete immutability classification while tolerating i-unsoundness.
For this reason, we have devised several unsound approximations
to increase the completeness (recall) of the analyses. Clients of the
analysis can create an i-sound analysis by combining only i-sound
components. Other clients, desiring more complete information,
can use i-unsound components as well. Figure 2 summarizes the
soundness characteristics of the analyses presented in this paper.

4. Dynamic Mutability Analysis
Our dynamic mutability analysis observes the program’s execu-

tion and classifies as mutable those method parameters that are used
to mutate objects. The algorithm is m-sound: it classifies a param-
eter as mutable only when the parameter is mutated. The algorithm
is also i-sound: it classifies all remaining parameters as unknown.
Section 4.1 gives the idea behind the algorithm, and Section 4.2
describes an optimized implementation.

To improve the analysis results, we developed several heuristics
(Section 4.3). Each heuristic carries a different risk of unsound-
ness. However, most are shown to be accurate in our experiments.
The analysis has an iterative variation with random input genera-
tion (Section 4.4) that improves analysis precision and run-time.

4.1 Conceptual Algorithm
During program execution, the dynamic analysis tags each ref-

erence in the running program with the set of all formal parame-
ters (from any method invocation on the call stack) whose fields

were directly or indirectly accessed to obtain the reference. When
a reference x is side-effected (i.e., used in x.f = y), all formal pa-
rameters in the set of x are classified as mutable. The analysis tags
references, not objects, because more than one reference can point
to the same object. Primitives need not be tagged, as they are im-
mutable.

The algorithm for detecting mutable parameters is given by a set
of data-flow rules. The rules track mutations to each parameter.
Next, we present those rules informally. The rules are formalized
in the full version of this paper [3].
1. On method entry, the algorithm adds each formal parameter

(that is classified as unknown) to the parameter set of the corre-
sponding actual parameter reference.

2. On method exit, the algorithm removes all parameters for the
current invocation from the parameter sets of all references in
the program.

3. Assignments, including pseudo-assignments for parameter pass-
ing and return values, propagate the parameter sets unchanged.

4. Field accesses also propagate the sets unchanged: the set of
parameters for x.f is the same as that of x.

5. For a field write x.f = v, the algorithm classifies as mutable all
parameters in the parameter set of x.

The next section presents an alternative algorithm that we imple-
mented.

4.2 Dynamic Analysis Algorithm
Maintaining reference tag sets for all references, a required by

the algorithm of Section 4.1, is computationally expensive. To im-
prove performance, we developed an alternative algorithm that does
not maintain parameter reference tags. The alternative algorithm is
i-sound and m-sound, but is less complete—it classifies fewer pa-
rameters. In the alternative algorithm, parameter p of method m is
classified as mutable if: (i) the transitive state of the object that p
points to changes during the execution of m, and (ii) p is not aliased
to any other parameter of m. Without part (ii), the algorithm would
not be m-sound—immutable parameters that are aliased to a mu-
table parameter during the execution may be wrongly classified as
mutable.

The example code in Figure 1 illustrates the difference between
the conceptual algorithm presented in Section 4.1 and the algo-
rithm presented in this section. When method main executes, it
calls modifyAll. The conceptual algorithm based on the defini-
tion (correctly) classifies parameters p1-p5 as mutable. The alter-
native algorithm leaves p4 and p5 as unknown since those parame-
ters are aliased (in fact in this example they are the same object)—
when the modification to the referent object happens (line 17), the
mutation is tracked to both parameters p4 and p5. Note that the
intra-procedural static analysis (Section 5.1) compensates for the
incompleteness of the dynamic analysis in this case and correctly
classifies p4 and p5 as mutable.

The algorithm permits an efficient implementation: when method
m is called during the program’s execution, the analysis computes
the set reach(m, p) of objects that are transitively reachable from
each parameter p via field references. When the program writes to
a field in object o, the analysis finds all parameters p of methods
that are currently on the call stack. For each such parameter p, if
o ∈ reach(m, p) and p is not aliased to other parameters of m, then
the analysis classifies p as mutable. The algorithm checks aliasing
by verifying emptiness of intersection of reachable sub-heaps (ig-
noring immutable objects, such as boxed primitives, which may be
shared).

The implementation instruments the analyzed code at load time.
The analysis works online, i.e., in tandem with the target program,

106

without creating a trace file. Our implementation includes the fol-
lowing three optimizations, which together improve the run time by
over 30×: (a) the analysis determines object reachability by main-
taining and traversing its own data structure that mirrors the heap,
which is faster than using reflection; (b) the analysis computes the
set of reachable objects lazily, when a modification occurs; and (c)
the analysis caches the set of objects transitively reachable from
every object, invalidating it when one of the objects in the set is
modified.

4.3 Dynamic Analysis Heuristics
The dynamic analysis algorithm described in Sections 4.1 and 4.2

is m-sound—a parameter is classified as mutable only if it is modi-
fied during execution. Heuristics can improve the completeness, or
recall (see Section 6), of the algorithm. The heuristics take advan-
tage of the absence of parameter modifications and of the classifi-
cation results computed by previous stages in the analysis pipeline.
Using the heuristics may potentially introduce i-unsoundness or m-
unsoundness to the analysis results, but in practice, they cause few
misclassifications (see Section 6.3.5).

(A) Classifying parameters as immutable at the end of the
analysis. This heuristic classifies as immutable all (unknown) pa-
rameters that satisfy conditions that are set by the client of the
analysis. In our framework, the heuristic classifies as immutable
a parameter p declared in method m if p was not modified, m was
executed at least N times, and the executions achieved block cov-
erage of at least t%. Higher values of the threshold N or t increase
i-soundness but decrease completeness.

The intuition behind this heuristic is that, if a method executed
multiple times, and the executions covered most of the method, and
the parameter was not modified during any of those executions,
then the parameter may be immutable. This heuristic is m-sound
but i-unsound. In our experiments, this heuristic greatly improved
recall and was not a significant source of mistakes (Section 6.3.5).

(B) Using current mutability classification. This heuristic clas-
sifies a parameter as mutable if the object to which the parameter
points is passed in a method invocation to a formal parameter that is
already classified as mutable (by a previous or the current analysis).
That is, the heuristic does not wait for the actual modification of the
object but assumes that the object will be modified if it is passed to
a mutable position. The heuristic improves analysis performance
by not tracking the object in the new method invocation.

The intuition behind this heuristic is that if an object is passed as
an argument to a parameter that is known to be mutable, then it is
likely that the object will be modified during the call. The heuris-
tic is i-sound but m-unsound. In our experiments, this heuristic
improved recall and run time of the analysis and caused few mis-
classifications (see Section 6.3.5).

(C) Classifying aliased mutated parameters. This heuristic
classifies a parameter p as mutable if the object that p points to is
modified, regardless of whether the modification happened through
an alias to p or through the reference p itself. For example, if pa-
rameters a and b happen to point to the same object o, and o is
modified, then this heuristic will classify both a and b as mutable,
even if it the modification is only done using the formal parameter’s
reference to a.

The heuristic is i-sound but m-unsound. In our experiments, us-
ing this heuristic improved the results in terms of recall, without
causing any misclassifications.

4.4 Using Randomly Generated Inputs
In this section we consider the use of randomly generated se-

quences of method calls as the required input for the dynamic anal-

ysis. Random generation can complement (or even replace) exe-
cutions provided by a user. For instance, Pacheco et al [26], uses
feedback directed random generation to detect previously-unknown
errors in widely used (and tested) libraries.

Using randomly generated execution has benefits for a dynamic
analysis. First, the user need not provide a sample execution. Sec-
ond, random executions may explore parts of the program that the
user-supplied executions do not reach. Third, each of the gener-
ated random inputs may be executed immediately—this allows the
client of the analysis to stop generating inputs when the client is
satisfied with the results of the analysis computed so far. Fourth,
the client of the analysis may focus the input generator on methods
with unclassified parameters.

Our generator gives a higher selection probability to methods
with unknown parameters and methods that have not yet been ex-
ecuted by other dynamic analyses in the pipeline. Generation of
random inputs is iterative. After the dynamic analysis has classi-
fied some parameters, it makes sense to propagate that information
(see Section 5.3) and to re-focus random input generation on the re-
maining unknown parameters. Such re-focusing iterations continue
as long as each iteration classifies at least 1% of the remaining un-
known parameters (the threshold is user-settable).

By default, the number of generated method calls per iteration is
max(5000, #methodsInProgram). The randomly generated inputs
are executed in safe way [26], using a Java security manager.

5. Static Mutability Analysis
This section describes a simple, scalable static mutability anal-

ysis. It consists of two phases: S, an intraprocedural analysis that
classifies as (im)mutable parameters (never) affected by field writes
within the procedure itself (Section 5.2), and P, an interprocedural
analysis that propagates mutability information between method
parameters (Section 5.3). P may be executed at any point in an
analysis pipeline after S has been run, and may be run multiple
times (interleaving with other analyses). S and P both rely on
an intraprocedural pointer analysis that calculates the parameters
pointed to by each local variable (Section 5.1).

5.1 Intraprocedural Points-To Analysis
To determine which parameters can be pointed to by each expres-

sion, we use an intraprocedural, context-insensitive, flow-insensitive,
1-level field-sensitive, points-to analysis. As a special case, the
analysis is flow-sensitive on the code from the beginning of a method
through the first backwards jump target, which includes the entire
body of methods without loops. We are not aware of previous work
that has explored this point in the design space, which we found to
be both scalable and sufficiently precise.

The points-to analysis calculates, for each local variable l, a set
P0(l) of parameters whose state l can point to directly and a set
P(l) of parameters whose state l can point to directly or transitively.
(Without loss of generality, we assume three-address SSA form and
consider only local variables.) The points-to analysis has “overes-
timate” and “underestimate” varieties; they differ in how method
calls are treated (see below).

For each local variable l and parameter p, the analysis calculates
a distance map D(l, p) from the fields of object l to a non-negative
integer or∞. D(l, p)(f) represents the number of dereferences that
can be applied to l starting with a dereference of the field f to find
an object pointed to (possibly indirectly) by p. Each map D(l, p) is
either strictly positive everywhere or is zero everywhere. As an ex-
ample, suppose l directly references p or some object transitively
pointed to by p; then D(l, p)(f) = 0 for all f . As another exam-
ple, suppose l. f .g.h = p.x; then D(l, p)(f) = 3. The distance map

107

D makes the analysis field-sensitive, but only at the first layer of
dereferencing; we found this to be important in practice to provide
satisfactory results.

The points-to analysis computes D(l, p) via a fixpoint computa-
tion on each method. At the beginning of the computation, D(p, p)(f) =

0, and D(l, p)(f) = ∞ for all l , p. Due to space constraints, we
give the flavor of the dataflow rules with a few examples:
• A field dereference l1 = l2. f updates

∀g : D(l1, p)(g) ← min(D(l1, p)(g),D(l2, p)(f) − 1)
D(l2, p)(f) ← min(D(l2, p)(f),min

g
D(l1, p)(g) + 1)

• A field assignment l1. f = l2 updates

D(l1, p)(f) ← min(D(l1, p)(f),min
g

D(l2, p)(g) + 1)

∀g : D(l2, p)(g) ← min(D(l2, p)(g),D(l1, p)(f) − 1)

• Method calls are handled either by assuming they create no
aliasing (creating an underestimate of the true points-to sets)
or by assuming they might alias all of their parameters together
(for an overestimate). If an underestimate is desired, no val-
ues of D(l, p)(f) are updated. For an overestimate, let S be
the set of all locals used in the statement (including receiver
and return value); for each l ∈ S and each parameter p, set
D(l, p)(f)← minl′∈S ,g D(l′, p)(g).

After the computation reaches a fixpoint, it sets

P(l) = {p | ∃ f : D(l, p)(f) , ∞}
P0(l) = {p | ∀ f : D(l, p)(f) = 0}

5.2 Intraprocedural Phase: S
The static analysis S works in four steps. First, S performs the

“overestimate” points-to analysis (Section 5.1). Second, the analy-
sis marks as mutable some parameters that are currently marked as
unknown: For each mutation l1. f = l2, the analysis marks all ele-
ments of P0(l1) as mutable. Third, the analysis computes a “leaked
set” L of locals, consisting of all arguments (including receivers)
in all method invocations and any local assigned to a static field
(in a statement of the form Global.field = local). Fourth, the
analysis marks as immutable all unknown parameters that are not
in the set ∪l∈LP(l) only if all method’s parameters can be marked
immutable.

S is i-sound and m-unsound. To avoid over-conservatism, S as-
sumes that on the entry to the analyzed method all parameters are
fully un-aliased, i.e., point to disjoint parts of the heap. This as-
sumption may cause S to miss possible mutations due to aliased
parameters; to maintain i-soundness, S never classifies a parameter
as immutable unless all other parameters to the method can be clas-
sified as immutable. The m-unsoundness of S is due to infeasible
paths (e.g., unreachable code), flow-insensitivity, and the overesti-
mation of the points-to analysis.

For example, S does not detect any mutation to parameter p3
of the method modifyAll in Figure 1. Since other parameters of
modifyAll (i.e., p4 and p5) are classified as mutable, S conserva-
tively leaves p3 as unknown. In contrast, Sălcianu’s static analysis
JPPA [34] incorrectly classifies p3 as immutable. JPPA’s result is
incorrect because there may exist an execution in which p4 and
p5 are aliased, in which case the object passed to p3 is mutated in
line 19 in Figure 1.

5.2.1 Intraprocedural Analysis Heuristic
We have also implemented a i-unsound heuristic SH that is like

S, but it can classify parameters as immutable even when other pa-

rameters of the same method are not classified as immutable. In our
experiments, this never caused a misclassification.

5.3 Interprocedural Propagation Phase: P
The interprocedural propagation phase P refines the current pa-

rameter classification by propagating both mutability and immutabil-
ity information through the call graph. Given an i-sound input clas-
sification, propagation is i-sound and m-unsound.

Because propagation ignores the bodies of methods, the P phase
is i-sound only if the method bodies have already been analyzed.
It is intended to be run only after the S phase of Section 5.1 has
already been run. However, it can be run multiple times (with other
analyses in between).

Section 5.3.1 describes the binding multi-graph (BMG), and then
Section 5.3.2 gives the propagation algorithm itself.

5.3.1 Binding Multi-Graph
The propagation uses a variant of the binding multi-graph (BMG)

[12]; our extension accounts for pointer data structures. Each node
is a method parameter m.p. An edge from m1.p1 to m2.p2 exists iff
m1 calls m2, passing as parameter p2 part of p1’s state (either p1 or
an object that may be transitively pointed-to by p1).

A BMG is created by generating a call-graph and translating
each method call edge into a set of parameter dependency edges,
using the sets P(l) described in Section 5.1 to tell which parameters
correspond to which locals.

The BMG creation algorithm is parameterized by a call-graph
construction algorithm. Our experiments used CHA [14]—the sim-
plest and least precise call-graph construction algorithm offered by
Soot. In the future, we want to investigate using more precise but
still scalable algorithms, such as RTA [4] (available in Soot, but
containing bugs that prevented us from using it), or those proposed
by Tip and Palsberg [36] (not implemented in Soot).

The true BMG is not computable, because determining perfect
aliasing and call information is undecidable. Our analysis uses an
under-approximation (i.e., it contains a subset of edges of the ideal
graph) and an over-approximation (i.e., it contains a superset of
edges of the ideal graph) to the BMG as safe approximations for
determining mutable and immutable parameters, respectively. One
choice for the over-approximated BMG is the fully-aliased BMG,
which is created with an overestimating points-to analysis which
assumes that method calls introduce aliasings between all parame-
ters. One choice for the under-approximated BMG is the un-aliased
BMG, which is created with an underestimating points-to analysis
which assumes that method calls introduce no aliasings between
parameters. More precise approximations could be computed by a
more complex points-to analysis.

To construct the under-approximation of the true BMG, propa-
gation needs a call-graph that is an under-approximation of the real
call-graph. However, most existing call-graph construction algo-
rithms [14, 16, 4, 36] create an over-approximation. Therefore, our
implementation uses the same call-graph for building the un- and
fully-aliased BMGs. Due to this approximation, our implementa-
tion of P is m-unsound. Actually, P is m-unsound even on the
under-approximation of the BMG. For example, assume that m1.p1
is unknown, m2.p2 is mutable, and there is an edge between m1.p1
and m2.p2. It is possible that there is an execution of m2.p2 in
which p2 is mutated, but for every execution that goes through m1,
m2.p2 is immutable. In this case, the algorithm would incorrectly
classify m1.p1 as mutable. In our experiments, this approximation
caused several misclassifications of immutable parameters as mu-
table (see Section 6.3.1).

108

program size classes parameters
(LOC) all non-trivial inspected

jolden 6,215 56 705 470 470
sat4j 15,081 122 1,499 1,136 118
tinysql 32,149 119 2,408 1,708 206
htmlparser 64,019 158 2,270 1,738 82
ejc 107,371 320 9,641 7,936 7,936
daikon 185,267 842 16,781 13,319 73
Total 410,102 1,617 33,304 26,307 8,885

Figure 3: Subject programs.

5.3.2 Propagation Algorithm
Propagation refines the parameter classification in 2 phases.
The mutability propagation classifies as mutable all the un-

known parameters that can reach in the under-approximated BMG
(can flow to in the program) a parameter that is classified as muta-
ble. Using an over-approximation to the BMG would be unsound
because spurious edges may lead propagation to incorrectly clas-
sify parameters as mutable.

The immutability propagation phase classifies additional pa-
rameters as immutable. This phase uses a fix-point computation:
in each step, the analysis classifies as immutable all unknown pa-
rameters that have no mutable or unknown successors (callees) in
the over-approximated BMG. Using an under-approximation to the
BMG would be unsound because if an edge is missing in the BMG,
the analysis may classify a parameter as immutable even though the
parameter is really mutable. This is because the parameter may be
missing, in the BMG, a mutable successor.

6. Evaluation
We experimentally evaluated all sensible combinations (192 in

all) of the mutability analyses described above, comparing the re-
sults with each other and with the correct classification of param-
eters. Our results indicate that staged mutability analysis can be
accurate, scalable, and useful.

6.1 Methodology and Measurements
We computed mutability for 6 open-source subject programs (see

Figure 3). When an example input was needed (e.g., for a dynamic
analysis), we ran each subject program on a single input.

• jolden (http://www-ali.cs.umass.edu/DaCapo/benchmarks.html) is
a benchmark suite of 10 small programs. As the example input,
we used the main method and arguments that were included
with the benchmarks. We included these programs primarily to
permit comparison with Sălcianu’s evaluation [34].

• sat4j (http://www.sat4j.org/) is a SAT solver. We used a file
with an unsatisfiable formula as the example input.

• tinysql (http://sourceforge.net/projects/tinysql) is a minimal
SQL engine. We used the program’s test suite as the example
input.

• htmlparser (http://htmlparser.sourceforge.net/) is a real-time
parser for HTML. We used our research group’s webpage as
the example input.

• ejc (http://www.eclipse.org/) is the Eclipse Java compiler. We
used one Java file as the example input.

• daikon (http://pag.csail.mit.edu/daikon/) is an invariant detec-
tor. We used the StackAr test case from its distribution as the
example input.

As the input to the first analysis in the pipeline, we used a pre-
computed classification for all parameters in the Java standard li-
braries. Callbacks from the library code to the client code (e.g.,

toString(), hashCode()) were analyzed under the closed world
assumption in which all of the subject programs were included. The
pre-computed classification was created once, and reused many
times in all the experiments. A benefit of using this classification is
that it covers otherwise un-analyzable code, such as native calls.

We measured the results only for non-trivial parameters declared
in the application. That is, we did not count parameters with a prim-
itive, boxed primitive, or String type, nor parameters declared in
external or JDK libraries.

To measure the accuracy of each mutability analysis, we deter-
mined the correct classification (mutable or immutable) for 8,885
parameters: all of jolden and ejc, and 5 randomly-selected classes
from each of the other programs. To find the correct classification,
we first ran every tool available to us (including our analysis pipe-
lines, Sălcianu’s tool, and the Javarifier [38] type inference tool for
Javari). Then, we manually verified the correct classification for
every parameter where any two tool results differed, or where only
one tool completed successfully. In addition, we verified an addi-
tional 200 parameters, chosen at random, where all tools agreed.
We found no instances where the tools agreed on the mutability
result, but the result was incorrect.

Figure 4 and the tables in Section 6.3 present precision and recall
results, computed as follows:

i-precision = ii
ii+im m-precision = mm

mm+mi

i-recall = ii
ii+ui+mi m-recall = mm

mm+um+im

where ii is the number of immutable parameters that are correctly
classified, and mi is the number of immutable parameters incor-
rectly classified as mutable (similarly, ui). Similarly, for mutable
parameters, we have mm, im and um. i-precision is measure of
soundness: it counts how often the analysis is correct when it classi-
fies a parameter as immutable. i-recall is measure of completeness:
it counts how many immutable parameters are marked as such by
the analysis. m-precision and m-recall are similarly defined. An i-
sound analysis has i-precision of 1.0, and an m-sound analysis has
m-precision of 1.0. Ideally, both precision and recall should be 1.0,
but this is not feasible: there is always a trade-off between analysis
precision and recall.

6.2 Evaluated Analyses
Our experiments evaluate pipeline analyses composed of anal-

yses described in Section 3. X-Y-Z denotes a staged analysis in
which component analysis X is followed by component analysis Y
and then by component analysis Z.

Our experiments use the following component analyses:

• S is the sound intraprocedural static analysis (Section 5.2).
• SH is the intraprocedural static analysis heuristic (Section 5.2.1).
• P is the interprocedural static propagation (Section 5.3).
• D is the dynamic analysis (Section 4), using the inputs of Sec-

tion 6.1.
• DH is D, augmented with all the heuristics described in Sec-

tion 4.3. DA, DB, and DC are D, augmented with just one of
the heuristics.

• DRH is DH enhanced with random input generation (Section
4.4); likewise for DRA, etc.

• J is Sălcianu and Rinard’s state-of-the-art static analysis JPPA
[34]. It never classifies parameters as mutable—only immutable
and unknown.

• JM is J, augmented to use a main method that contains calls
to all the public methods in the subject program [29]; J only
analyzes methods that are reachable from main.

• JMH is JM plus an m-unsound heuristic to classify as mutable

109

Pr
og

. Analysis i-recall i-precision m-recall m-precision
ej

c
S-P-DRBC-P 0.781 1.000 0.915 0.956
SH-P 0.777 1.000 0.904 0.971
SH-P-DRH-P 0.928 0.996 0.907 0.971
J 0.593 0.999 0.000 0.000
JMH 0.734 0.998 0.691 0.941
JMH-SH-P-DRH-P 0.939 0.997 0.944 0.951

jo
ld

en

S-P-DRBC-P 0.829 1.000 1.000 0.924
SH-P 0.829 1.000 0.907 1.000
SH-P-DRH-P 0.973 1.000 1.000 0.970
J 0.894 1.000 0.000 0.000
JMH 0.985 1.000 0.660 0.955
JMH-SH-P-DRH-P 0.989 0.996 0.990 0.970

da
ik

on

S-P-DRBC-P 0.705 1.000 0.931 0.844
SH-P 0.636 1.000 0.931 0.844
SH-P-DRH-P 0.750 1.000 0.931 0.844
J 0.750 1.000 0.000 0.000
JMH - - - -
JMH-SH-P-DRH-P - - - -

tin
y+

sa
t+

ht
m

l S-P-DRBC-P 0.836 1.000 0.863 0.953
SH-P 0.836 1.000 0.863 0.965
SH-P-DRH-P 0.968 0.984 0.947 0.957
J - - - -
JMH - - - -
JMH-SH-P-DRH-P - - - -

Figure 4: Mutability analyses on subject programs. Subjects
tinysql, sat4j and htmlparser are presented jointly as the last group,
marked as tiny+sat+html. Empty cells mean that the analysis
aborted with an error.

any parameter for which J provides an explanation of a poten-
tial modification.

6.3 Results
We experimented with six programs and 192 different analysis

pipelines. Figure 4 compares the accuracy of a selected set of mu-
tability analyses among those with which we experimented. S-
P-DRBC-P is the best-performing i-sound staged analysis. For
uses that do not require i-soundness, the pipeline with the high-
est overall precision and recall was SH-P-DRH-P. Compared to
Sălcianu’s [34] state-of-the-art analysis J, the staged mutability anal-
ysis achieves equal or slightly worse i-precision, better i-recall, and
much better m-recall and m-precision. The staged analysis is also
considerably more scalable.

This section discusses the important observations that stem from
the results of our experiments. Each sub-section discusses one ob-
servation that is supported by a table listing representative pipelines
illustrating the observation. The tables in this section present re-
sults for ejc. Results for other programs were similar. However,
for smaller programs all analyses did better and the differences in
results were not as pronounced.

6.3.1 Interprocedural Propagation
Running interprocedural propagation (P in the tables) is always

beneficial, as the following table shows on representative pipelines.

Analysis i-recall i-precision m-recall m-precision
SH 0.563 1.000 0.299 0.998
SH-P 0.777 1.000 0.904 0.971
SH-P-DRH 0.922 0.996 0.906 0.971
SH-P-DRH-P 0.928 0.996 0.907 0.971
DRH 0.540 0.715 0.144 0.987
DRH-P 0.940 0.776 0.663 0.988

Propagation may decrease m-precision but, in our experiments,
the decrease was never larger than 0.03 (not shown in the above

table). In the experiments, propagation always increased all other
statistics (sometimes significantly). For example, the table shows
that propagation increased i-recall from 0.563 in SH to 0.777 in
SH-P and it increased m-recall from 0.299 in SH to 0.904 in SH-P.
Moreover, since almost all of the run-time cost of propagation lies
in the call-graph construction, only the first execution incurs no-
table run-time cost on the analysis pipeline; subsequent executions
of propagation are fast. Therefore, most pipelines presented in the
sequel have P stages executed after each other analysis stage.

6.3.2 Combining Static and Dynamic Analysis
Combining static and dynamic analysis in either order is helpful—

the two types of analysis are complementary.

Analysis i-recall i-precision m-recall m-precision
SH-P 0.777 1.000 0.904 0.971
SH-P-DRH 0.922 0.996 0.906 0.971
SH-P-DRH-SH-P 0.928 0.996 0.907 0.971
DRH 0.540 0.715 0.144 0.987
DRH-SH-P 0.939 0.812 0.722 0.981
DRH-SH-P-DRH 0.943 0.813 0.722 0.981

For best results, the static stage should precede the dynamic
stage. Pipeline SH-P-DRH, in which the static stage precedes the
dynamic stage, achieved significantly better i-precision and m-recall
than DRH-SH-P, with marginally lower (by .01-.02) i-recall and
m-precision.

Repeating executions of static or dynamic analyses bring no sub-
stantial further improvement. For example, SH-P-DRH-SH-P (i.e.,
static-dynamic-static) achieves essentially the same results as SH-
P-DRH (i.e., static-dynamic). Similarly, DRH-SH-P-DRH (i.e.,
dynamic-static-dynamic) only marginally improves i-recall over DRH-
SH-P (i.e., dynamic-static).

6.3.3 Comparing Static Stages
In a staged mutability analysis, using a more complex static anal-

ysis brings little benefit. We experimented with replacing our light-
weight interprocedural static analysis with J, Sălcianu’s heavyweight
static analysis.

Analysis i-recall i-precision m-recall m-precision
SH-P-DRH-P 0.928 0.996 0.907 0.971
J-DRH-P 0.973 0.787 0.664 0.998
JMH-DRH-P 0.939 0.922 0.878 0.949
JMH-SH-P-DRH-P 0.939 0.997 0.944 0.951

SH-P-DRH-P outperforms JMH-DRH-P with respect to 3 of 4
statistics, including i-precision (see Section 6.3.6). Combining the
two static analyses improves recall—JMH-SH-P-DRH-P has better
i-recall than SH-P-DRH-P and better m-recall than JMH-DRH-P.
This shows that the two kinds of static analysis are complementary.

6.3.4 Randomly Generated Inputs in Dynamic Analysis
Using randomly generated inputs to the dynamic analysis (DRH)

achieves better results than using a user-supplied execution (DH).
We also considered pipelines that use both types of executions.

Analysis i-recall i-precision m-recall m-precision
SH-P-DH 0.827 0.984 0.911 0.961
SH-P-DH-P-DRH 0.917 0.984 0.915 0.958
SH-P-DRH 0.922 0.996 0.906 0.971
SH-P-DRH-P-DH 0.932 0.983 0.912 0.970

Pipeline SH-P-DRH achieves better results than SH-P-DH with
respect to i-precision, i-recall and m-precision (with lower m-recall).
Using both kinds of executions can have different effects. For in-
stance, SH-P-DH-P-DRH has better results than SH-P-DH, but SH-
P-DRH-P-DH has a lower i-precision (due to i-unsound-ness of

110

heuristic A) with a small gain in i-recall and m-recall over SH-
P-DRH.

The surprising finding that randomly generated code is as ef-
fective as using an example execution suggests that other dynamic
analyses (e.g., race detection [35, 25], invariant detection [18], in-
ference of abstract types [21], and heap type inference [27]) might
also benefit from replacing example executions with random exe-
cutions.

6.3.5 Dynamic Analysis Heuristics
By exhaustive evaluation, we determined that each of the heuris-

tics is beneficial. A pipeline with DRH achieves notably higher
i-recall and only slightly lower i-precision than a pipeline with DR
(which uses no heuristics). This section indicates the unique con-
tribution of each heuristic, by removing it from the full set (because
some heuristics may have overlapping benefits).

Heuristic A (evaluated by the DRBC line) has the greatest effect;
removing this heuristic significantly lowers i-recall (as compared
to SH-P-DRH-P, which includes all heuristics.) However, because
the heuristic is i-unsound, removing it increases i-precision, albeit
only by 0.004 (all measurements are for ejc). Heuristic B (the
DRAC line) increases both i-recall and i-precision, and improves
performance by 10%. Heuristic C (the DRAB line) is primarily a
performance optimization. Including this heuristic results in a 30%
performance improvement and a small increase to m-recall.

Analysis i-recall i-precision m-recall m-precision
SH-P-DR-P 0.777 1.000 0.905 0.971
SH-P-DRH-P 0.928 0.996 0.907 0.971
SH-P-DRBC-P 0.777 1.000 0.906 0.971
SH-P-DRAC-P 0.927 0.995 0.905 0.971
SH-P-DRAB-P 0.928 0.996 0.906 0.971

6.3.6 i-sound Analysis Pipelines
An i-sound mutability analysis never incorrectly classifies a pa-

rameter as immutable. All our component analyses have i-sound
variations, and composing i-sound analyses yields an i-sound staged
analysis.

Analysis i-recall i-precision m-recall m-precision
S 0.454 1.000 0.299 0.998
S-P 0.777 1.000 0.904 0.971
S-P-DRBC-P 0.777 1.000 0.906 0.971
S-P-DBC-P 0.777 1.000 0.912 0.959

S is the i-sound intra-procedural static analysis. Not surpris-
ingly, the i-sound pipelines achieve lower i-recall than i-unsound
pipelines presented in Figure 4 (which presents the results for S-P-
DRBC-P for all subjects). For clients for whom i-soundness is crit-
ical, this may be an acceptable trade-off. In contrast to our analyses,
J is not i-sound [33], although it did achieve very high i-precision
(see Figure 4).

6.4 Scalability
Figure 5 shows run times of analyses on daikon (185 kLOC,

which is considerably larger than subject programs used in previous
evaluations of mutability analyses [31, 29, 34]). The experiments
were run using a quad-core AMD Opteron 64-bit 4×1.8GHz ma-
chine with 4GB of RAM, running Debian Linux and Sun HotSpot
64-bit Server VM 1.5.0 09-b01. Staged mutability analysis scales
to large code-bases and runs in about a quarter the time of Sălcianu’s
analysis (i.e., J in Figure 5).

Figure 5 shows that S-P (Section 6.3.6) runs, on daikon, an or-
der of magnitude faster than J (or even better, if differences in
call graph construction are discounted). Moreover, S-P is i-sound,

Analysis total time (s) last component (s)
S 167 167
S-P 564 397
SH 167 167
SH-P 564 397
SH-P-DH 859 295
SH-P-DH-P 869 10
SH-P-DRH 1484 920
SH-P-DRH-P 1493 9
J 5586 5586
JM - -
JMH - -

Figure 5: The cumulative run time, and the time for the last compo-
nent analysis in the pipeline, for the daikon subject program. Empty
cells indicate that the analysis aborted with an error.

while J is i-unsound. Finally, S-P has high m-recall and m-precision,
while J has 0 m-recall and m-precision.

An optimized implementation of the P and DRH stages could
run even faster. First, the major cost of propagation (P) is comput-
ing the call graph, which can be reused later in the same pipeline.
J’s RTA [4] call graph construction algorithm takes seconds, but
our tool uses Soot, which takes two orders of magnitude longer
to perform CHA [14] (a less precise algorithm). Use of a more
optimized implementation could greatly reduce the cost of propa-
gation. Second, the DRH step iterates many times, each time per-
forming load-time instrumentation and other tasks that could be
cached; without this repeated work, DRH can be much faster than
DH. These optimizations would save between 50% and 70% of the
total SH-P-DRH-P time.

There is a respect in which our implementation is more opti-
mized than J. J is a whole-program analysis that cannot take ad-
vantage of pre-computed mutability information for a library such
as the JDK. By contrast, our analysis does so by default, and Fig-
ure 5’s numbers measure executions that use this pre-computed
library mutability information. The number of annotated library
methods is less than 10% of the number of methods in daikon.

6.5 Application: Test Input Generation
In addition to evaluating the accuracy of mutability analysis, we

evaluated how much the computed immutability information helps
a client analysis. We experimented with Palulu [2], a system that
generates models for model-based testing. The model is a directed
graph that describes sequences of method calls. The model can be
pruned (without changing the state space it describes) by removing
calls that do not mutate specific parameters, because non-mutating
calls are not useful in constructing new test inputs. A smaller model
permits a systematic test generator to explore the state space more
quickly, or a random test generator to explore more of the state
space. Per-parameter mutability information permits more model
reduction than method-level purity information.

We ran Palulu on our subject programs using no immutability in-
formation, and using immutability information computed by J and
by SH-P-DRH-P. Mutability information permitted Palulu to run
faster and to generate smaller models. Figure 6 shows the num-
ber of nodes and edges in the generated model graph, and the time
Palulu took to generate the model (not counting the immutability
analysis). This experiment uses J rather than JM, in part because
JM runs on more of the programs (3 out of 6), but primarily be-
cause JM’s results would be no better than J. Palulu models include
only methods called during execution, and J starts from the same
main method. JM adds more analysis contexts, but doing so never
changes a mutable parameter to immutable, which is the only way
to improve Palulu model size.

111

analysis nodes ratio edges ratio time (s) ratio
jolden + ejc + daikon
no immutability 444,729 1.00 624,767 1.00 6,703 1.00
SH-P-DRH-P 124,601 3.57 201,327 3.10 4,271 1.56
J 131,425 3.83 210,354 2.97 4,626 1.44
htmlparser + tinysql + sat4j
no immutability 48,529 1.00 68,402 1.00 215 1.00
SH-P-DRH-P 8,254 5.88 13,047 5.24 90 2.38
J - - - - - -

Figure 6: Palulu [2] model size and model generation time, when
assisted by immutability classifications. The numbers are sums
over indicated subject programs. Models with fewer nodes and
edges are better. Also shown are improvement ratios over no im-
mutability information (the “ratio” columns); larger ratios are bet-
ter. Empty cells indicate that the analysis aborted with an error.

7. Related Work
For reasons of space, we discuss only the most closely related

work, which discovers immutability.
Early work [5, 12] on analyzing programs to determine what mu-

tations may occur considered only pointer-free languages, such as
Fortran. In such a language, aliases are induced only by reference
parameter passing, and aliases persist until the procedure returns.
MOD analysis determines which of the reference parameters, and
which global variables, are assigned by the body of a procedure.
Our static analysis extends this work to handle pointers and object-
oriented programs, and incorporates field-sensitivity.

Subsequent research, often called side-effect analysis, addressed
aliasing in languages containing pointers. An alias analysis can de-
termine the possible referents of pointers and thus the possible side
effects. Ours is the first analysis to address reference immutability,
i.e., what references might be used to perform a mutation.

New alias/class analyses lead to improved side effect analyses [32,
29]. Landi et al. [22] improve the precision of previous work by us-
ing program-point-specific aliasing information. Ryder et al. [32]
compare the flow-sensitive algorithm [22] with a flow-insensitive
one that yields a single alias result that is valid throughout the
program. The flow-sensitive version is more precise but slower
and unscalable, and the flow-insensitive version provides adequate
precision for certain applications. Milanova et al. [24] provide a
yet more precise algorithm via an object-sensitive, flow-insensitive
points-to analysis that analyzes a method separately for each of
the objects on which the method is invoked. Object sensitivity
outperforms Andersen’s context-insensitive analysis [30]. Roun-
tev [29] compares RTA to a context-sensitive points-to analysis
for call graph construction, with the goal of improving side-effect
analysis. Rountev’s experimental results suggest that sophisticated
pointer analysis may not be necessary to achieve good results. We,
too, compared a sophisticated analysis (Sălcianu’s) to a simpler one
(ours) and found the simpler one competitive.

Side-effect analysis [10, 31, 24, 29, 34, 33] originated in the
compiler community and has focused on i-sound analyses. Our
work investigates other tradeoffs and other uses for the immutabil-
ity information. Specifically, differently from previous research,
our work (1) computes both mutable and immutable classifications,
(2) trades off soundness and precision to improve overall accuracy,
(3) combines dynamic and static stages, (4) includes a novel dy-
namic mutability analysis, and (5) permits an analysis to explicitly
represent its incompleteness.

Rountev [29] and Sălcianu [34, 33] developed static analyses for
determining side-effect-free methods. Like ours, they combine a
pointer analysis, an intra-procedural analysis to determine “imme-

diate” side effects, and inter-procedural propagation to determine
transitive side effects.

Sălcianu defines a side-effect-free method as one that does not
modify any heap cell that existed when the method was called.
Rountev’s definition is more restricted and prohibits a side-effect-
free method from creating and returning a new object, or creating
and using a temporary object. Sălcianu’s analysis can compute per-
parameter mutability information in addition to per-method side ef-
fect information. Rountev’s coarser analysis results are one reason
that we cannot compare directly to his implementation. Rountev
applies his analysis to program fragments by creating an artificial
main routine that calls all methods of interest; we adopted this ap-
proach in augmenting J (see Section 6).

Porat et al. [28, 6] infer class immutability for global (static)
variables in Java’s rt.jar, thus indicating the extent to which im-
mutability can be found in practice; the work also addresses seal-
ing/encapsulation. Foster et al. [19] developed an inference algo-
rithm for const annotations using Cqual, a tool for adding type
qualifiers to C programs. Their algorithm does not handle aliasing.
Foster et al. present also a polymorphic version of const inference,
in which a single reference may have zero or more annotations, de-
pending on the context.

Since we first reported our technique [1], other researchers have
also explored the idea of dynamic side-effect analysis. Dallmeier
and Zeller (http://www.st.cs.uni-sb.de/models/jdynpur, Febru-
ary 2007) developed a tool for offline dynamic side-effect analysis
(not parameter mutability) but provide no description of the algo-
rithm or experimental results. Xu et al. [41] developed dynamic
analyses for detecting side-effect-free methods. Their work dif-
fers significantly from ours. Xu et al. consider only the method’s
receiver, while our analyses are more fine-grained and produce re-
sults for all parameters in the method, including the receiver. Xu
et al. examine only one analysis at a time. In contrast, our frame-
work combines the strengths of static and dynamic analyses. Xu et
al. do not present an evaluation of the effectiveness of their analy-
ses in terms of precision and recall and only report the percentage
of methods identified as pure by their analyses. In contrast, we
established the immutability of more than 8800 method parame-
ters by manual inspection and report the results of our 192 analysis
combinations with respect to the established ground truth. Finally,
Xu et al.’s dynamic analysis is unsound. In contrast, our analysis
framework is sound and we provide sound analyses, both static and
dynamic, to use in the framework.

8. Conclusion
We have described a staged mutability analysis framework for

Java, along with a set of component analyses that can be plugged
into the analysis. The framework permits combinations of mutabil-
ity analyses, including static and dynamic techniques. The frame-
work explicitly represents analysis incompleteness and reports both
immutable and mutable parameters. Our component analyses take
advantage of this feature of the framework.

Our dynamic analysis is novel, to the best of our knowledge;
at run time, it marks parameters as mutable based on mutations
of objects. We presented a series of heuristics, optimizations, and
enhancements that make it practical. For example, iterative ran-
dom test input generation appears competitive with user-supplied
sample executions. Our static analysis reports both immutable and
mutable parameters, and it demonstrates that a simple, scalable
analysis can perform at a par with much more heavyweight and
sophisticated static analyses. Combining the lightweight static and
dynamic analyses yields a combined analysis with many of the pos-
itive features of both, including both scalability and accuracy.

112

Our evaluation includes many different combinations of staged
analysis, in both sound and unsound varieties. This evaluation
sheds insight into both the complexity of the problem and the sorts
of analyses that can be effectively applied to it. We also show how
the results of the mutability analysis can improve a client analysis.

Acknowledgements
We thank Yoav Zibin for his help with the formalization and com-
ments on the paper, Jaime Quinonez for his assistance with Javar-
ifier, Carlos Pacheco for his help with the random input generator
and Alexandru Sălcianu for assistance with his analysis.

References
[1] Shay Artzi, Michael D. Ernst, David Glasser, and Adam

Kieżun. Combined static and dynamic mutability analysis.
Technical Report MIT-CSAIL-TR-2006-065, MIT CSAIL,
Sep. 18, 2006.

[2] Shay Artzi, Michael D. Ernst, Adam Kieżun, Carlos Pacheco,
and Jeff H. Perkins. Finding the needles in the haystack:
Generating legal test inputs for object-oriented programs. In
M-TOOS, Oct. 2006.

[3] Shay Artzi, Adam Kieżun, David Glasser, and Michael D.
Ernst. Combined static and dynamic mutability analysis.
Technical Report MIT-CSAIL-TR-2007-020, MIT CSAIL,
Mar. 23, 2007.

[4] David F. Bacon and Peter F. Sweeney. Fast static analysis of
C++ virtual function calls. In OOPSLA, pages 324–341, Oct.
1996.

[5] John P. Banning. An efficient way to find the side effects of
procedure calls and the aliases of variables. In POPL, pages
29–41, Jan. 1979.

[6] Marina Biberstein, Joseph Gil, and Sara Porat. Sealing,
encapsulation, and mutability. In ECOOP, pages 28–52, June
2001.

[7] Adrian Birka and Michael D. Ernst. A practical type system
and language for reference immutability. In OOPSLA, pages
35–49, Oct. 2004.

[8] Lilian Burdy, Yoonsik Cheon, David Cok, Michael D. Ernst,
Joe Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik
Poll. An overview of JML tools and applications. STTT,
7(3):212–232, June 2005.

[9] Néstor Cataño and Marieke Huisman. Chase: a static checker
for JML’s assignable clause. In VMCAI, pages 26–40, Jan.
2003.

[10] Jong-Deok Choi, Michael Burke, and Paul Carini. Efficient
flow-sensitive interprocedural computation of pointer-induced
aliases and side effects. In POPL, pages 232–245, Jan. 1993.

[11] Lars R. Clausen. A Java bytecode optimizer using side-effect
analysis. Concurrency: Practice and Experience,
9(11):1031–1045, 1997.

[12] Keith D. Cooper and Ken Kennedy. Interprocedural side-effect
analysis in linear time. In PLDI, pages 57–66, June 1988.

[13] Valentin Dallmeier, Christian Lindig, Andrzej Wasylkowski,
and Andreas Zeller. Mining object behavior with ADABU. In
WODA, pages 17–24, May 2006.

[14] Jeffrey Dean, David Grove, and Craig Chambers.
Optimization of object-oriented programs using static class
hierarchy analysis. In ECOOP, pages 77–101, Aug. 1995.

[15] Brian Demsky and Martin Rinard. Role-based exploration of
object-oriented programs. In ICSE, pages 313–324, May 2002.

[16] Amer Diwan, J. Eliot B. Moss, and Kathryn S. McKinley.
Simple and effective analysis of statically-typed
object-oriented programs. In OOPSLA, pages 292–305, Oct.
1996.

[17] José Javier Dolado, Mark Harman, Mari Carmen Otero, and
Lin Hu. An empirical investigation of the influence of a type
of side effects on program comprehension. IEEE TSE,
29(7):665–670, July 2003.

[18] Michael D. Ernst, Jake Cockrell, William G. Griswold, and
David Notkin. Dynamically discovering likely program
invariants to support program evolution. IEEE TSE,
27(2):99–123, Feb. 2001.

[19] Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. A
theory of type qualifiers. In PLDI, pages 192–203, June 1999.

[20] Martin Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 2000.

[21] Philip Jia Guo. A scalable mixed-level approach to dynamic
analysis of C and C++ programs. Master’s thesis, MIT Dept.
of EECS, May 5, 2006.

[22] William Landi, Barbara G. Ryder, and Sean Zhang.
Interprocedural modification side effect analysis with pointer
aliasing. In PLDI, pages 56–67, June 1993.

[23] Leonardo Mariani and Mauro Pezzè. Behavior capture and
test: Automated analysis of component integration. In
ICECCS, pages 292–301, June 2005.

[24] Ana Milanova, Atanas Rountev, and Barbara G. Ryder.
Parameterized object sensitivity for points-to and side-effect
analyses for Java. In ISSTA, pages 1–11, July 2002.

[25] Robert O’Callahan and Jong-Deok Choi. Hybrid dynamic data
race detection. In PPOPP, pages 167–178, July 2003.

[26] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and
Thomas Ball. Feedback-directed random test generation. In
ICSE, May 2007.

[27] Marina Polishchuk, Ben Liblit, and Chloë Schulze. Dynamic
heap type inference for program understanding and
debugging. In POPL, Jan. 2007.

[28] Sara Porat, Marina Biberstein, Larry Koved, and Bilba
Mendelson. Automatic detection of immutable fields in Java.
In CASCON, Nov. 2000.

[29] Atanas Rountev. Precise identification of side-effect-free
methods in Java. In ICSM, pages 82–91, Sep. 2004.

[30] Atanas Rountev, Ana Milanova, and Barbara G. Ryder.
Points-to analysis for Java based on annotated constraints. In
OOPSLA, pages 43–55, Oct. 2001.

[31] Atanas Rountev and Barbara G. Ryder. Points-to and
side-effect analyses for programs built with precompiled
libraries. In CC, pages 20–36, Apr. 2001.

[32] Barbara G. Ryder, William A. Landi, Philip A. Stocks, Sean
Zhang, and Rita Altucher. A schema for interprocedural
modification side-effect analysis with pointer aliasing. ACM
TOPLAS, 23(2):105–186, Mar. 2001.

[33] Alexandru Sălcianu. Pointer analysis for Java programs:
Novel techniques and applications. PhD thesis, MIT Dept. of
EECS, Sep. 2006.

[34] Alexandru Sălcianu and Martin C. Rinard. Purity and
side-effect analysis for Java programs. In VMCAI, pages
199–215, Jan. 2005.

[35] Stefan Savage, Michael Burrows, Greg Nelson, Patrick
Sobalvarro, and Thomas Anderson. Eraser: A dynamic data
race detector for multi-threaded programs. In SOSP, pages
27–37, Dec. 1997.

[36] Frank Tip and Jens Palsberg. Scalable propagation-based call
graph construction algorithms. In OOPSLA, pages 281–293,
Oct. 2000.

[37] Oksana Tkachuk and Matthew B. Dwyer. Adapting side
effects analysis for modular program model checking. In
ESEC/FSE, pages 188–197, Sep. 2003.

[38] Matthew S. Tschantz. Javari: Adding reference immutability
to Java. Master’s thesis, MIT Dept. of EECS, Aug. 2006.

[39] Mark Weiser. Program slicing. IEEE TSE, SE-10(4):352–357,
July 1984.

[40] Tao Xie. Augmenting automatically generated unit-test suites
with regression oracle checking. In ECOOP, pages 380–403,
July 2006.

[41] Haiying Xu, Christopher J. F. Pickett, and Clark Verbrugge.
Dynamic purity analysis for Java programs. In PASTE, June
2007.

113

