
An Empirical Study on Groupware Support for Software Inspection Meetings

Paul Grünbacher Michael Halling Stefan Biffl

Johannes Kepler University Linz

Systems Engineering & Automation

Altenbergerstr. 69

4040 Linz, Austria

Vienna University of Technology

Inst. of Software Technology

Karlsplatz 13

1040 Vienna, Austria

pg@sea.uni-linz.ac.at mh@sea.uni-linz.ac.at Stefan.Biffl@tuwien.ac.at

Abstract

Software inspection is an effective way to assess prod-

uct quality and to reduce the number of defects. In a soft-
ware inspection the inspection meeting is a key activity to

agree on collated defects, to eliminate false positives, and

to disseminate knowledge among the team members.
However, inspection meetings often require high effort

and may lose defects found in earlier inspection steps due

to ineffective meeting techniques. Only few tools are
available for this task. We have thus been developing a

set of groupware tools to lower the effort of inspection

meetings and to increase their efficiency. We conducted
an experiment in an academic environment with 37 sub-

jects to empirically investigate the effect of groupware

tool support for inspection meetings. The main findings of
the experiment are that tool support considerably lowered

the meeting effort, supported inspectors in identifying

false positives, and reduced the number of true defects
lost.

1. Introduction

It is widely recognized that the inspection of software

artifacts such as requirements, plans, designs, or code is

effective to assess product quality and reduce the number

of defects [4]. An inspection consists of several clearly

defined activities including inspection planning and

preparation, individual defect detection, team meeting, as

well as evaluation and rework.

Within the inspection process defect detection and in-

spection meetings play a crucial role: In defect detection

individual inspectors examine the inspection object to

identify potential defects, possibly by following a detec-

tion technique. During the inspection meeting the inspec-

tors discuss all reported defects and agree on true defects.

The goals of the meeting step are to collect defects, to

eliminate false positives, and to find new defects.

Although the benefits of inspections are obvious the

high costs associated with inspections often inhibit wide-

spread adoption in industry. It has been observed that due

to inappropriate techniques meetings may even lead to a

loss of defects identified during individual defect detec-

tion. Researchers and practitioners have therefore been

trying to optimize the inspection process through special-

ized techniques (e.g., reading techniques) and tools aim-

ing at reducing the administrative overhead to increase

inspection effectiveness and efficiency.

Inspections are also interesting from the perspective of

computer-supported cooperative work (CSCW) since they

pose challenges to tool developers. For example, an in-

spection environment has to support individual work as

well as team meetings, it has to enable the collaboration

of heterogeneous stakeholders, and it has to support a

large variety of inspections objects and work procedures.

We have been addressing these issues in our previous

research on GRIP (GRoupware Supported Inspection

Process) [15]. GRIP provides a framework and collabora-

tive tools for an inspection team. Encouraged by feedback

from early trials our goal was to empirically validate the

benefits of GRIP. We have thus carried out an experiment

to compare GRIP to previous large-scale manual inspec-

tion experiments. In the experiment we learned that for

defect detection (a) the effectiveness is similar for manual

and GRIP-based inspections; (b) inspection effort and

defect overlap decrease significantly with tool support,

while (c) efficiency increases considerably [14].

In this paper we describe an experiment on tool sup-

port for inspection meetings and discuss how GRIP sup-

ports inspection meetings. Our previous results in two

large-scale experiments indicated that meeting losses are

on average higher than meeting gains [11]. This paper

thus explores whether groupware tools can improve in-

spection meetings such that their effort can be justified.

The paper is organized as follows: Section 2 discusses

tools for inspection meetings and briefly introduces GRIP.

Section 3 presents our family of experiments for evaluat-

ing tool support for inspection meetings. Section 4 dis-

cusses the results of the experiment on inspection meet-

ings and compares it to our previous manual experiments.

Conclusions are given in Section 5.

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

2. Tool Support for Inspection Meetings

Numerous tools and platforms are available for auto-

mating software inspections [21]. However, most tools

have a strong focus on reporting and collection of identi-

fied defects. There is only little support available for in-

spection meetings. Furthermore, there are only few em-

pirical studies on the benefits of automating the inspection

process. In [21] the authors conclude that in these studies

there is often no comparison to a manual inspection proc-

ess in the same environment which makes it hard to assess

whether and how much tools actually improve the per-

formance of inspections.

With respect to support for inspection meetings the

empirical findings are even more limited. Genuchten et al.

for example report on a study on applying a group support

system (GSS) in code inspection meetings [6, 7]. The

authors present empirical evidence that tool support sig-

nificantly increases performance and the overall contribu-

tion of an inspection meeting. Defect detection is, how-

ever, not addressed in this work.

2.1 Groupware-Supported Inspection Process

In our research on software inspections to date we

have been pursuing the following objectives: (1) Devel-

opment of collaborative tools and techniques covering the

entire inspection process [15]; (2) Integration of technical

inspection aspects with management activities such as

planning, monitoring, or process analysis [12]; (3) Em-

pirical studies to validate the usefulness, effectiveness,

and efficiency of our approach [14]; and (4) the im-

provement of inspection support for informal require-

ments [13].

Figure 1 shows the GRIP framework which has been

guiding our research and covers the complete inspection

life-cycle. Figure 1 also outlines the roles in GRIP:

The inspection manager is in charge of planning and

tailoring the inspection process. This includes the se-

lection of inspection guidelines, the preparation of the

inspection object(s), and the configuration of commu-

nication channels (among inspectors as well as be-

tween inspectors and the inspection manager). During

defect detection and during the inspection meeting the

inspection manager continuously monitors the ongoing

process and makes adjustments where necessary. Fi-

nally, measures are analysed during inspection evalua-

tion.

Individual inspectors are responsible to electronically

annotate defects during defect detection. In the inspec-

tion meeting they rely on decision support tools to

agree on collated annotations.

Inspection

Planning

Inspection

Manager

Individual Defect

Detection

Team Meeting

Inspection

Evaluation

Inspector

Inspector

.

.

.

.

Project Tailored

Insp. Process

Inspection

Guidelines

Inspection

Object

Annotations (e.g.

defects)
Adjust Focus

and Optimize

Evaluation

Data

Evaluation

Data

Adjust Focus

and Optimize

Discussion

Support

Decision

Support

Collated

Annotations

EvaluationMeasures

Communication

Channel

GRIP environment

Figure 1: The GRIP framework [15].

In a recent study [14] we have documented the positive

effects of GRIP on individual inspectors’ performance

with respect to defect detection effectiveness and effi-

ciency. In this work we focus on an empirical evaluation

of the support offered by GRIP for inspection meetings.

2.2 Inspection Meeting Support in GRIP

When discussing inspection meetings it is important to

briefly outline the evolution of the inspection process over

time. While Fagan [5] viewed the inspection meeting as

the key activity for defect detection, Parnas and

Weiss [22] argued to perform defect detection during in-

dividual preparation. They proposed to minimize the

number of inspectors participating in a meeting as only a

limited number of inspectors (usually two) can interact at

the same time while others are just listening. These two

different views on the role of the inspection meeting help

to understand why empirical results on meeting effective-

ness differ considerably. While Fagan reports that inspec-

tion meetings were very effective [5], more recent reports

show that this is not necessarily the case in an inspection

process with a different focus [2, 11, 22, 23, 26].

However, shifting defect detection from meeting to in-

dividual preparation does not necessarily mean abolishing

meetings. Land et al. [20] as well as Sauer et al. [24] em-

phasize the importance of inspection meetings for defect

collection and defect discrimination (i.e., identification of

false positives). They report that meetings have a clear

advantage over individual defect detection in discriminat-

ing between true defects and false positives. False posi-

tives are defect reports, which actually are not true de-

fects. According to Land et al. [20] false positives can

become a problem if occurring frequently because they

incur further costs such as the time spent on repairing

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

them. Johnson and Tjahjono [17, 18] as well as Porter and

Johnson [23] report similar results and argue that inspec-

tion meetings are beneficial mainly due to the consider-

able reduction of false positives.

Consequently, the inspection team meeting plays an

important role in GRIP. The starting point for a meeting is

the inspection object (e.g., a set of requirements) together

with all annotations collected during individual defect

detection.

Figure 2: Assessment of defect severity and
visualization of diverging inspectors’ opinions in

the GRIP tool.

During the inspection meeting the inspectors are first

asked to assess these defect annotations for severity. All

defects above a previously defined threshold are then fur-

ther classified by using a customizable taxonomy of de-

fects. All defects below a previously defined threshold are

considered false positives, i.e., no true defects.

In order to support this group decision problem we

have been customizing electronic voting tools for our

purpose. GroupSystems.com’s Alternative Analysis tool

allows assessing a set of voting items using a set of crite-

ria. Voting methods are customizable (e.g., 1-10 scale,

ordinal scale, etc.). Figure 2 shows a snapshot of the

moderator screen after the team of inspectors has finished

assessing all defects. The tool aggregates all individual

ballots thus allowing quick elimination of defects not

worth further consideration. The tool also allows visualiz-

ing situations where the team of inspections had diverging

opinions on defect severity. The inspector manager can

use the tool to initiate a discussion about defects needing

special attention. The tool can also be used to automati-

cally discriminate between true defects and false positives

by analyzing the ballots.

After initial trials with these different decision support

capabilities our goal was to empirically validate their

benefits and costs. In particular we were interested to in-

vestigate whether tool support can increase the efficiency

of team meetings so that they would be easier to justify

from an economic point of view. Please note that the cur-

rent implementation of GRIP focuses on pure defect dis-

crimination as proposed in [24]. We did not explicitly

support other potential meeting goals like synergy and soft
benefits. In the case of synergy existing empirical evi-

dence (see [2] and [14] for a detailed review of existing

material) suggests that if the individual preparation phase

already focuses on defect detection, inspection meetings

show very little synergy benefits. As far as soft benefits

are concerned, it is difficult to measure them empirically.

Of course, potential benefits have to be compared to

the meeting costs. In general, inspection meetings are

very costly due to the number of participants and limited

opportunities for parallel work in traditional meeting set-

tings. However, tool support can considerably improve

this situation by offering means for parallel contributions

during meeting. For example, inspectors can assess the

severity of defects in parallel and team discussions focus

on critical issues only.

Another important aspect of inspection meeting costs

are true defects found during individual defect detection

that are classified as false positives during the meeting.

The meeting process should ensure to reduce the probabil-

ity of a true defect being classified as a false positive.

GRIP tries to meet this requirement by focusing inspec-

tors’ attention on defects leading in diverging votes.

3. An Empirical Study to Evaluate Tool

Support for Inspection Meetings

In the following two sections we describe our study on

tool support for defect discrimination in inspection meet-

ings and relate the derived performance measures to simi-

lar measures from conventional paper-based inspection

meetings.

3.1 Research Approach and Hypotheses

Defect Discrimination: The main goal of inspection

meetings in our study is to identify false positives that

were reported as defects during individual preparation. As

false positives increase the rework effort it is reasonable

to evaluate techniques for their reduction. However, de-

fect discrimination suffers from the risk of labeling true

defects as false positives and removing them from the

final, collated defect list. Usually, the costs associated

with the loss of one true defect are considerably higher

than the costs of keeping one false positive. However,

these costs depend on the specific context of the inspec-

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

tion and have to be assessed individually. In this paper,

we do not assume any specific distribution for these costs

but simply compare absolute number of removed false

positives and lost true defects. We calculate these values

for paper-based and tool-based inspection meetings and

expect that tool-supported meetings are able to remove

more false positives while losing less true defects since

the tool allows more objective and transparent discussion

and voting.

Inspection Meeting Effort: Due to the tool support we

expect a reduction in meeting effort, as the inspectors can

work concurrently and are more focused on important

issues. We analyze an efficiency criterion indicating the

number of false positives removed per time unit. Fur-

thermore we compare the effort of tool-based meetings to

the effort of paper-based meetings and expect tool-based

meetings to be more cost-efficient.

Fully Automated Defect Discrimination: We further

evaluate a so-called “Automated Defect Discrimination”

method based on simple statistical measures for diverging

voting results. We discuss how different threshold pa-

rameters influence the relationship between false positives

removed and true defects lost and investigate whether

there is a threshold with superior meeting output com-

pared to actual discussion in a meeting regarding

(a) eliminating less true defects and (b) eliminating more

false positives.

3.2 The Requirements Inspection Experiments

In our previous work we have performed a family of

experiments for the empirical evaluation of various re-

search issues in software inspection. Details on these ex-

periments can be found in [14] and [9].

Table 1: Description of Experiment Family.
Experiment A B C

Year 1999-2000 2000-2001 2002

CBR-Inspectors 86 47 37

CBR-Teams 16 9 7

Average Team Size 5.4 5.9 5.3

Reference defects 86 97 93

Inspection Meeting Yes No Yes

Inspection Process Manual Manual GRIP

Table 1 summarizes key information about the three

related experiments. The first two experiments A and B

studied the influence of different reading techniques on

inspection performance. For details on Experiments A and

B see [3, 4] for a comparison of the two experiments see

[10]. Experiments A and B used checklist-based reading

(CBR) and scenario-based reading techniques. For tool

evaluation in Experiment C we decided to select the CBR

technique in order to have a sufficient sample size.

We regard the three experiments as an experiment

family due to a number of similarities: (a) the experimen-

tal design (i.e., controlled experiment in an academic en-

vironment), their operation (including planning and tuto-

rial activities), and the experiment administration team

were similar in all experiments, (b) the subjects participat-

ing in the experiment were all selected from computer

science students at Vienna University of Technology, and

(c) checklists, requirements documents, and seeded de-

fects were very similar for all experiments.

As far as inspection meeting performance is con-

cerned, we can only compare the results of Experiment A

and C. However, the comparison has to be done with cau-

tion as inspectors in Experiment A were asked to identify

new defects during the meeting. In Experiment C the

meeting purpose was only to discriminate between false

positives and true defects.

3.3 Experimental Tool-Supported Meeting

Process in Experiment C

Experiment C involved 37 undergraduate computer

science students and almost identical requirements docu-

ments as Experiments A and B. The inspection object was

a 47-page requirements specification, containing about

13,000 words, 16 UML diagrams, and 97 seeded defects.

All seeded defects were found before the experiment dur-

ing the development of the requirements document in

numerous quality assurance iterations. All seeded defects

could be found by the inspectors without referring to

additional documents. Please refer to [3] and [10] for

details on these aspects of the experiment.

In the following, however, we focus on the specifics of

tool support for inspection meetings. Experiment C con-

sisted of an individual defect detection activity and an

inspection meeting. Details on the individual defect detec-

tion step can be found in [14].

The planning step for the experiment included tailoring

the tool by preparing the requirements document for de-

fect reporting and customizing the individual inspection

process in the groupware tool. A detailed description of

the tailoring process is given in [15]. Three tutorials were

prepared to teach the inspection process and the tool to

participants: 1) a UML tutorial to ensure the proper un-

derstanding of the notations used in the requirements

document, 2) a tutorial to teach the checklist-based read-

ing technique, and 3) a tutorial explaining the use of the

groupware tool.

Although GRIP supports both synchronous as well as

asynchronous inspections, the entire inspection process

was carried out synchronously to increase control over the

experiment environment. During all process steps an in-

spection manager supervised each team and was respon-

sible for the accuracy and feasibility of data collected

from the inspectors.

Between individual defect detection and the inspection

meeting the inspection manager had to generate a collated

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

defect list from all individually reported defects. As this

task is supported by GRIP, this (minor) effort is ignored

in the analysis.

Voting on Defect

Severity

Discussion of

Selected Defects

Automated

Elimination of

Defects

Voting on Defect

Severity

Figure 3. Inspection Meeting Process
in Experiment.

Figure 3 summarizes the individual activities per-

formed during the inspection meeting experiment. In a

first step participants individually assign a severity level

between 1 (i.e., no defect) and 5 (i.e., major defect) to

each reported defect. The tool then aggregates all the in-

dividual votes for each defect and presents intuitive and

illustrative (e.g., traffic light) measures for the homogene-

ity of submitted votes. The inspection manager can thus

easily identify reported defects where all inspectors have

similar opinion regarding severity (in this case no further

discussion is necessary) or (more importantly) spot de-

fects where opinions are diverging. The definition of ho-

mogeneous and heterogeneous voting can be adjusted via

thresholds. For the defects with diverging votes the in-

spection manager then initiates an oral discussion in

which the team has to agree upon a severity level for the

discussed defect. Finally, inspectors assess the defect

type. The results of this second voting procedure are not

analyzed in detail in this paper.

3.4 Threats to Validity

As any empirical study, this experiment exhibits a

number of threats to internal and external validity. While

internal validity investigates if the treatment causes the

outcome, external validity deals with generalization [27].

Internal Validity. The primary threat to internal valid-

ity is selection. This comes from the selection of subjects

and their assignments to particular treatments. In Experi-

ments A and B, we used randomization to avoid system-

atic bias from selection. In Experiment C selection was

not an issue as we only had one treatment. However, to

ensure comparability of inspection team performance we

randomly selected students to form teams.

A second threat to internal validity is process confor-

mance. However, the guidance provided by the group-

ware tool and the supervision by the inspection manager

enabled us to easily enforce process conformance in Ex-

periment C.

A third threat to internal validity arises from the fact

that we did not control the inspection effort. However,

effort also represents an important dependent variable we

want to analyze. We thus think that letting the inspectors

decide how much effort they want to spend on the inspec-

tion meeting is reasonable in a controlled, synchronous

inspection. However, effort values of Experiment A and C

cannot be directly compared as the emphases of the meet-

ing steps where somewhat different.

A fourth threat to internal validity is data consistency.

As with process conformance, data consistency was much

easier to ensure during Experiment C due to tool support.

In Experiments A and B, inspection supervisors checked

the completeness and validity of the collected defect and

effort data immediately after each step.

External Validity. With respect to external validity,

we took specifications from a real-world application con-

text to develop an inspection object representing a realis-

tic situation. The document size and defect density were

somewhat above the levels from other reported experi-

ments [1], but not particularly high compared to docu-

ments in industrial settings [8]. Moreover, we used in-

spection activities that had been implemented in a number

of professional development environments [19].

The subjects were students participating in a university

class. As pointed out in the literature [24] students may

not be representative of real developers. However, Höst et

al. [16] observe no significant differences between stu-

dents and professionals for small tasks of judgment. Ac-

cording to Tichy [25] using students as subjects is accept-

able if students are appropriately trained and the data is

used to establish a trend. These conditions are both met in

our case.

4. Results

In this section we describe key empirical results re-

garding tool support for inspection meetings. We analyze

defect discrimination performance (a) including team dis-

cussions and (b) fully automated and present information

on meeting effort (see hypotheses in Section 3.1). We also

compare the results from the tool-based meeting to data

from paper-based inspections where possible.

4.1 Defect Discrimination

Based on our experience with inspection meetings and

the prevailing opinion in recent research, inspection meet-

ings promise little benefits with respect to the detection of

new defects. Inspection meetings can however reduce

rework effort by removing false positives reported during

individual defect detection. As argued before the focus of

this empirical study is on defect discrimination perform-

ance. With respect to the identification of false positives

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

we focus exclusively on the data from Experiment C as

detailed information regarding false positives is not avail-

able for Experiment A.

Table 2 summarizes the number of total defect reports

removed, the number of false positives eliminated and the

number of true defects lost during meeting for each team

participating in Experiment C. Values given in Table 2

show the percentage of the appropriate base value (e.g.,

team 1 reduced the number of total defect reports by

25.7%, the number of false positives by 30.1% and the

detected reference defects by 15.6%).

Table 2: Reduction of total defect reports,
elimination of false positives, and loss of

reference defects in percent for Exp C (%).

 Total

Reports

False

Positives

Reference

Defects

Team 1 25.7 30.1 15.6

Team 2 6.1 8.2 1.9

Team 3 15.7 24.0 1.6

Team 4 9.0 16.2 0.0

Team 5 3.7 6.3 0.0

Team 6 1.9 4.3 0.0

Team 7 13.4 19.6 0.0

Mean 10.8 15.5 2.7

Std.dev. 8.2 9.7 5.7

Table 2 illustrates that between 4% and 30% of the re-

ported false positives were removed during the inspection

meeting. Furthermore only few reference defects were

lost (with the exception of team 1). Overall tool-supported

inspection meetings proved to be a viable means for dis-

criminating between true defects and false positives.

Table 3 documents the impact of inspection meetings

on the number of true defects detected in more detail. As

we do have appropriate data for Experiment A, we can

compare paper-based and tool-based inspection meetings

with respect to this criterion.

Table 3: Net gain of reference defects (%)
 for ExpA and ExpC.

Reference

defects lost

Reference

defects gained

Net gain of

reference de-

fects
Mean Std.dev. Mean Std.dev. Mean Std.dev.

ExpA 32.2 19.2 23.2 17.5 -8.9 33.9

ExpC 2.7 5.7 n/a n/a -2.7 5.7

Please note however an important difference between

the meeting goals in Experiments A and C. While we

aimed at also identifying new reference defects in Ex-

periment A, we focused exclusively on defect discrimina-

tion in Experiment C and consequently did not detect any

new defects. Details on the meeting performance of Ex-

periment A can be found in [11]. When comparing the net

gain criterion we can observe that tool-supported inspec-

tion meetings outperform paper-based inspection meet-

ings. Although there were new defects identified during

inspection meetings in Experiment A, these gains could

by far not outweigh the significant meeting losses. In the

case of Experiment C there were no meeting gains but

overall meeting losses were on average reduced by a fac-

tor three. It is further important to observe that the stan-

dard deviation of meeting performance is very high in

Experiment A, indicating that meeting performance var-

ied a lot. In Experiment C the clearer and simpler focus of

meetings also reduced standard deviations considerably.

4.2 Automated Defect Discrimination

In the previous section we described meeting perform-

ance with respect to the meeting process including discus-

sion among participants on defects with diverging votes.

However, as a comparable benchmark to the performance

of these meetings we apply a simple automated defect

discrimination technique that is supported by GRIP. The

advantage of this technique is a reduction of meeting ef-

fort as no discussions need to take place.

This automated defect discrimination is based on the

inspectors’ votes for defect severity. The inspection man-

ager can define a threshold for the average team’s vote on

a defect’s severity. If this vote is below the threshold the

defect is classified as false positive and removed from the

defect list; if the vote is above the threshold the defect is

classified as a true defect and included in the final defect

list.

0%

20%

40%

60%

80%

100%

1.34 1.5 1.75 2 2.5 3

Thr e shol d

Team 1 Team 2 Team 3 Team 4

Team 5 Team 6 Team 7

Figure 4: Automated Defect Discrimination
in percent of total false positives for Exp C.

We evaluated different thresholds in order to illustrate

the trade-off between the removal of false positives and

the loss of reference defects. Figure 4 shows that the num-

ber of eliminated false positives increases with a more

stringent threshold.

However, for the determination of the optimal thresh-

old we have to consider the tradeoff between eliminated

false positives and lost true defects. If we use a low

threshold we ensure that very few reference defects are

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

lost but also reduce the number of false positives identi-

fied. If we use a high threshold, we observe the opposite

effect. Figure 5 summarizes the dependency of most

important meeting performance criteria on the definition

of this threshold.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1.34 1.5 1.75 2 2.5 3

Threshold

Elim. FP Elim. RD Detected RD

Figure 5: Dependence of eliminated false
positives (Elim. FP), lost reference defects (Elim.

RD) and detected reference defects (Detected
RD) for different thresholds.

4.3 Meeting Effort

Finally we analyze the meeting effort invested in Ex-

periments A and C. As we applied somewhat different

meeting processes and defined different meeting goals the

effort values are not directly comparable. Nevertheless

Table 4 shows that the meeting in Experiment C took

considerably less time than the meeting in Experiment A.

Furthermore the standard deviation is reduced to a rea-

sonable level, while it was very high for Experiment A. In

the last row Table 4 further shows that we could even

further decrease meeting effort by using the automated

defect discrimination approach.

Table 4: Average effort of meetings in minutes
for all teams in ExpA and ExpC.

 Average

Effort

Std.dev.

ExpA 293 129

ExpC 100 5

ExpC (automated) 80 5

5. Conclusions and Further Work

In this paper we have described an empirical evalua-

tion of automating software inspection meetings. The re-

search integrates concepts from the areas of computer-

supported cooperative work, requirements engineering, as

well as verification and validation. We focused on the

performance of tool-supported meetings where the main

purpose was to discriminate between false positives and

true defects to reduce the rework effort after inspection.

Our empirical data illustrates that tool support results in

good discrimination performance and reduces the number

of false positives by 15% on average.

However, it is even more important to evaluate the

number of lost true defects, as these meeting losses incur

usually higher costs than any false positive not removed

during meeting. With respect to this criterion the tool-

supported meeting process shows, in fact, very good per-

formance and considerably outperforms comparable re-

sults from paper-based inspection meetings (2.7% vs.

32.2% true defects lost on average).

Another advantage of tool-support is that it offers

additional, statistically oriented techniques based on indi-

vidual inspectors’ votes to discriminate automatically

between false positives and true defects. We have ex-

perimented with different thresholds and illustrated the

trade-off between removal of false positives and loss of

true defects. Our data shows that simple techniques for

automated defect discrimination show discrimination per-

formance comparable to discussion-based meetings but

further reduce meeting effort.

However, especially for such automated defect dis-

crimination techniques but also for the general planning

step of traditional inspection meetings, more explicit deci-

sion support is required in order to enable inspection man-

agers to determine thresholds for discrimination and to

optimize the effort invested into inspection meetings. An

economic model including the costs of false positives and

of lost true defects is necessary to appropriately optimize

the trade-offs between false positives not removed and

true defects lost.

Although the performance of tool-supported inspection

meetings reported in this paper is promising the number

of unidentified false positives is rather high. A possible

explanation is the fact that we used a requirements speci-

fication for inspection. Due to the nature of requirements

the definition and exact identification of defects is much

harder. Further analysis of our empirical data also shows

that for defect reports in the introductory chapter of the

requirements document, it turned out to be more difficult

to discriminate between false positives and true defects

than for defect reports in object diagrams or data models.

An efficient discrimination of true defects and false posi-

tives thus depends highly on the exact and understandable

definition of a defect. However, defect definitions repre-

sent a challenge in the case of rather informal, early life-

cycle software development products (like requirements

specifications).

The clear and simple meeting definition (defect dis-

crimination instead of discrimination plus synergy) used

in the experiment helped inspectors to focus on the impor-

tant tasks and reduced performance variation considera-

bly. We, therefore, think that these empirical results fur-

ther support the argument to focus inspection meetings on

defect discrimination rather than on detecting new de-

fects. For this purpose tools like GRIP can efficiently and

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

effectively support inspection meetings.

Acknowledgements

This work was in part supported by the Austrian Sci-

ence Fund (Research Grant P14128). We want to thank

the participants of all three experiments and in particular

Martin Weninger for their contributions.

References

[1] Basili, V., Green, S., Laitenberger, O., Lanubile, F.,

Shull, F., Soerumgaard, S., and Zelkowitz, M., The Em-

pirical Investigation of Perspective-Based Reading. Em-
pirical Software Engineering: An International J., 1996.

1(2):133-164.

[2] Bianchi, A., Lanubile, F., and Visaggio, G. A Con-

trolled Experiment to Assess the Effectiveness of Inspec-

tion Meetings. In: Metrics 01. 2001. London.

[3] Biffl, S. and Halling, M. Investigating the influence of

inspector capability factors with four inspection tech-

niques on inspection performance. In: 8th IEEE Int. Soft-
ware Metrics Symposium,. 2002. Ottawa: IEEE Comp.

Soc. Press.

[4] Biffl, S. and Halling, M., Investigating the Defect De-

tection Effectiveness and Cost-Benefit of Nominal

Inspection Teams. IEEE Transactions on Software Engi-

neering, 2003.

[5] Fagan, M., Design and Code Inspections To Reduce

Errors In Program Development,. IBM Systems Journal,

1976. 15(3):182-211.

[6] Genuchten, M., Cornelissen, W., and Dijk, C., Sup-

porting Inspections With an Electronic Meeting System.

JMIS, 1998. 14(3):165-178.

[7] Genuchten, M., Dijk, C., Scholten, H., and D., V.,

Industrial Experience in Using Group Support Systems

for Software Inspections. IEEE Software, 2001. 18(3):60-

65.

[8] Gilb, T. and Graham, D., Software Inspection. 1993:

Addison-Wesley.

[9] Halling, M., Supporting Management Decisions in the

Software Inspection Process. 2002, Vienna University of

Technology.

[10] Halling, M. and Biffl, S. Using Reading Techniques

to Focus Inspection Performance. In: Euromicro 2001
Conference - Software Product and Process Improvement

Track. 2001. Warsaw: IEEE Comp. Soc. Press.

[11] Halling, M. and Biffl, S., Investigating the Influence

of Software Inspection Process Parameters on Inspection

Meeting Performance. IEE Proceedings-Software, 2002.

149(5).

[12] Halling, M., Biffl, S., and Grünbacher, P. A Group-

ware-Supported Inspection Process for Active Inspection

Management. In: Euromicro 2002 Conference. 2002.

Dortmund Germany: IEEE CS.

[13] Halling, M., Biffl, S., and Grünbacher, P., An Eco-

nomic Approach for Improving Requirements Negotiation

Models with Inspection. Requirements Engineering Jour-

nal, Springer, 2003.

[14] Halling, M., Biffl, S., and Grünbacher, P. An Ex-

periment Family to Investigate the Defect Detection Ef-

fect of Tool-Support for Requirements Inspection. In: 9th

IEEE Int. Software Metrics Symposium. 2003. Sydney:

IEEE Comp. Soc. Press.

[15] Halling, M., Grünbacher, P., and Biffl, S. Tailoring a

COTS Group Support System for Software Requirements

Inspection. In: 16th IEEE International Conference on

Automated Software Engineering. 2001. San Diego.

[16] Höst, M., Regnell, B., and Wohlin, C., Using Stu-

dents as Subjects - A Comparative Study of Students and

Professionals in Lead-Time Impact Assessment,. Empiri-
cal Software Engineering, 2000. 5:201-214.

[17] Johnson, P.M. and Tjahjono, D. Assessing software

review meetings: A controlled experimental study using

CSRS. In: ICSE. 1997. Boston.

[18] Johnson, P.M. and Tjahjono, D., Does Every Inspec-

tion Really Need a Meeting? Empirical Software Engi-
neering, 1998.

[19] Laitenberger, O. and DeBaud, J.-M., An encompass-

ing life cycle centric survey of software inspection. Jour-
nal of Systems and Software, 2000. 50(1):5-31.

[20] Land, L.P.W., Jeffery, R., and Sauer, C. Validating

the Defect Detection Performance Advantage of Group

Designs for Software Reviews. In: ESEC/FSE. 1997.

[21] MacDonald, F. and Miller, J., A Comparison of

Computer Support Systems for Software Inspection.
Automated Software Engineering, 1999. 6:291-313.

[22] Parnas, D.L. and Weiss, D.M. Active design review:

principles and practices. In: 8th Int. Conf. on Software

Engineering. 1985.

[23] Porter, A.A. and Johnson, P.M., Assessing Software

Review Meetings: Results of a Comparative Analysis of

Two Experimental Studies. IEEE Transactions on Soft-

ware Engineering,, 1997. 23(3).

[24] Sauer, C., Jeffery, D., Land, L., and Yetton, P., The

Effectiveness of Software Development Technical Re-

views: A Behaviorally Motivated Program of Research.
IEEE Transactions on Software Engineering, 2000.

26(1):11-14.

[25] Tichy, W., Hints for Reviewing Empirical Work in

Software Engineering. Empirical Software Engineering:

An International Journal, 2001. 5:309-312.

[26] Votta, L., Does every Inspection need a Meeting?

ACM Software Eng. Notes, 1993. 18(5):107-114.

[27] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C.,

Regnell, B., and Wesslén, A., Experimentation in Soft-
ware Engineering: An Introduction, The Kluwer Interna-

tional Series in Software Engineering. 2000: Kluwer

Academic Publishers.

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

