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Abstract

Software inspection is an effective way to assess prod-

uct quality and to reduce the number of defects. In a soft-
ware inspection the inspection meeting is a key activity to 

agree on collated defects, to eliminate false positives, and 

to disseminate knowledge among the team members. 
However, inspection meetings often require high effort 

and may lose defects found in earlier inspection steps due 

to ineffective meeting techniques. Only few tools are 
available for this task. We have thus been developing a 

set of groupware tools to lower the effort of inspection 

meetings and to increase their efficiency. We conducted 
an experiment in an academic environment with 37 sub-

jects to empirically investigate the effect of groupware 

tool support for inspection meetings. The main findings of 
the experiment are that tool support considerably lowered 

the meeting effort, supported inspectors in identifying 

false positives, and reduced the number of true defects 
lost. 

1. Introduction 

It is widely recognized that the inspection of software 

artifacts such as requirements, plans, designs, or code is 

effective to assess product quality and reduce the number 

of defects [4]. An inspection consists of several clearly 

defined activities including inspection planning and 

preparation, individual defect detection, team meeting, as 

well as evaluation and rework. 

Within the inspection process defect detection and in-

spection meetings play a crucial role: In defect detection 

individual inspectors examine the inspection object to 

identify potential defects, possibly by following a detec-

tion technique. During the inspection meeting the inspec-

tors discuss all reported defects and agree on true defects. 

The goals of the meeting step are to collect defects, to 

eliminate false positives, and to find new defects. 

Although the benefits of inspections are obvious the 

high costs associated with inspections often inhibit wide-

spread adoption in industry. It has been observed that due 

to inappropriate techniques meetings may even lead to a 

loss of defects identified during individual defect detec-

tion. Researchers and practitioners have therefore been 

trying to optimize the inspection process through special-

ized techniques (e.g., reading techniques) and tools aim-

ing at reducing the administrative overhead to increase 

inspection effectiveness and efficiency. 

Inspections are also interesting from the perspective of 

computer-supported cooperative work (CSCW) since they 

pose challenges to tool developers. For example, an in-

spection environment has to support individual work as 

well as team meetings, it has to enable the collaboration 

of heterogeneous stakeholders, and it has to support a 

large variety of inspections objects and work procedures. 

We have been addressing these issues in our previous 

research on GRIP (GRoupware Supported Inspection 

Process) [15]. GRIP provides a framework and collabora-

tive tools for an inspection team. Encouraged by feedback 

from early trials our goal was to empirically validate the 

benefits of GRIP. We have thus carried out an experiment 

to compare GRIP to previous large-scale manual inspec-

tion experiments. In the experiment we learned that for 

defect detection (a) the effectiveness is similar for manual 

and GRIP-based inspections; (b) inspection effort and 

defect overlap decrease significantly with tool support, 

while (c) efficiency increases considerably [14]. 

In this paper we describe an experiment on tool sup-

port for inspection meetings and discuss how GRIP sup-

ports inspection meetings. Our previous results in two 

large-scale experiments indicated that meeting losses are 

on average higher than meeting gains [11]. This paper 

thus explores whether groupware tools can improve in-

spection meetings such that their effort can be justified. 

The paper is organized as follows: Section 2 discusses 

tools for inspection meetings and briefly introduces GRIP. 

Section 3 presents our family of experiments for evaluat-

ing tool support for inspection meetings. Section 4 dis-

cusses the results of the experiment on inspection meet-

ings and compares it to our previous manual experiments. 

Conclusions are given in Section 5. 
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2.  Tool Support for Inspection Meetings 

Numerous tools and platforms are available for auto-

mating software inspections [21]. However, most tools 

have a strong focus on reporting and collection of identi-

fied defects. There is only little support available for in-

spection meetings. Furthermore, there are only few em-

pirical studies on the benefits of automating the inspection 

process. In [21] the authors conclude that in these studies 

there is often no comparison to a manual inspection proc-

ess in the same environment which makes it hard to assess 

whether and how much tools actually improve the per-

formance of inspections. 

With respect to support for inspection meetings the 

empirical findings are even more limited. Genuchten et al.

for example report on a study on applying a group support 

system (GSS) in code inspection meetings [6, 7]. The 

authors present empirical evidence that tool support sig-

nificantly increases performance and the overall contribu-

tion of an inspection meeting. Defect detection is, how-

ever, not addressed in this work. 

2.1 Groupware-Supported Inspection Process 

In our research on software inspections to date we 

have been pursuing the following objectives: (1) Devel-

opment of collaborative tools and techniques covering the 

entire inspection process [15]; (2) Integration of technical 

inspection aspects with management activities such as 

planning, monitoring, or process analysis [12]; (3) Em-

pirical studies to validate the usefulness, effectiveness, 

and efficiency of our approach [14]; and (4) the im-

provement of inspection support for informal require-

ments [13].  

Figure 1 shows the GRIP framework which has been 

guiding our research and covers the complete inspection 

life-cycle. Figure 1 also outlines the roles in GRIP: 

The inspection manager is in charge of planning and 

tailoring the inspection process. This includes the se-

lection of inspection guidelines, the preparation of the 

inspection object(s), and the configuration of commu-

nication channels (among inspectors as well as be-

tween inspectors and the inspection manager). During 

defect detection and during the inspection meeting the 

inspection manager continuously monitors the ongoing 

process and makes adjustments where necessary. Fi-

nally, measures are analysed during inspection evalua-

tion. 

Individual inspectors are responsible to electronically 

annotate defects during defect detection. In the inspec-

tion meeting they rely on decision support tools to 

agree on collated annotations. 
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Figure 1: The GRIP framework [15]. 

In a recent study [14] we have documented the positive 

effects of GRIP on individual inspectors’ performance 

with respect to defect detection effectiveness and effi-

ciency. In this work we focus on an empirical evaluation 

of the support offered by GRIP for inspection meetings. 

2.2 Inspection Meeting Support in GRIP 

When discussing inspection meetings it is important to 

briefly outline the evolution of the inspection process over 

time. While Fagan [5] viewed the inspection meeting as 

the key activity for defect detection, Parnas and 

Weiss [22] argued to perform defect detection during in-

dividual preparation. They proposed to minimize the 

number of inspectors participating in a meeting as only a 

limited number of inspectors (usually two) can interact at 

the same time while others are just listening. These two 

different views on the role of the inspection meeting help 

to understand why empirical results on meeting effective-

ness differ considerably. While Fagan reports that inspec-

tion meetings were very effective [5], more recent reports 

show that this is not necessarily the case in an inspection 

process with a different focus [2, 11, 22, 23, 26].  

However, shifting defect detection from meeting to in-

dividual preparation does not necessarily mean abolishing 

meetings. Land et al. [20] as well as Sauer et al. [24] em-

phasize the importance of inspection meetings for defect 

collection and defect discrimination (i.e., identification of 

false positives). They report that meetings have a clear 

advantage over individual defect detection in discriminat-

ing between true defects and false positives. False posi-

tives are defect reports, which actually are not true de-

fects. According to Land et al. [20] false positives can 

become a problem if occurring frequently because they 

incur further costs such as the time spent on repairing 
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them. Johnson and Tjahjono [17, 18] as well as Porter and 

Johnson [23] report similar results and argue that inspec-

tion meetings are beneficial mainly due to the consider-

able reduction of false positives. 

Consequently, the inspection team meeting plays an 

important role in GRIP. The starting point for a meeting is 

the inspection object (e.g., a set of requirements) together 

with all annotations collected during individual defect 

detection. 

Figure 2: Assessment of defect severity and 
visualization of diverging inspectors’ opinions in 

the GRIP tool. 

During the inspection meeting the inspectors are first 

asked to assess these defect annotations for severity. All 

defects above a previously defined threshold are then fur-

ther classified by using a customizable taxonomy of de-

fects. All defects below a previously defined threshold are 

considered false positives, i.e., no true defects. 

In order to support this group decision problem we 

have been customizing electronic voting tools for our 

purpose. GroupSystems.com’s Alternative Analysis tool 

allows assessing a set of voting items using a set of crite-

ria. Voting methods are customizable (e.g., 1-10 scale, 

ordinal scale, etc.). Figure 2 shows a snapshot of the 

moderator screen after the team of inspectors has finished 

assessing all defects. The tool aggregates all individual 

ballots thus allowing quick elimination of defects not 

worth further consideration. The tool also allows visualiz-

ing situations where the team of inspections had diverging 

opinions on defect severity. The inspector manager can 

use the tool to initiate a discussion about defects needing 

special attention. The tool can also be used to automati-

cally discriminate between true defects and false positives 

by analyzing the ballots. 

After initial trials with these different decision support 

capabilities our goal was to empirically validate their 

benefits and costs. In particular we were interested to in-

vestigate whether tool support can increase the efficiency 

of team meetings so that they would be easier to justify 

from an economic point of view. Please note that the cur-

rent implementation of GRIP focuses on pure defect dis-

crimination as proposed in [24]. We did not explicitly 

support other potential meeting goals like synergy and soft 
benefits. In the case of synergy existing empirical evi-

dence (see [2] and [14] for a detailed review of existing 

material) suggests that if the individual preparation phase 

already focuses on defect detection, inspection meetings 

show very little synergy benefits. As far as soft benefits 

are concerned, it is difficult to measure them empirically. 

Of course, potential benefits have to be compared to 

the meeting costs. In general, inspection meetings are 

very costly due to the number of participants and limited 

opportunities for parallel work in traditional meeting set-

tings. However, tool support can considerably improve 

this situation by offering means for parallel contributions 

during meeting. For example, inspectors can assess the 

severity of defects in parallel and team discussions focus 

on critical issues only. 

Another important aspect of inspection meeting costs 

are true defects found during individual defect detection 

that are classified as false positives during the meeting. 

The meeting process should ensure to reduce the probabil-

ity of a true defect being classified as a false positive. 

GRIP tries to meet this requirement by focusing inspec-

tors’ attention on defects leading in diverging votes. 

3. An Empirical Study to Evaluate Tool  

Support for Inspection Meetings 

In the following two sections we describe our study on 

tool support for defect discrimination in inspection meet-

ings and relate the derived performance measures to simi-

lar measures from conventional paper-based inspection 

meetings. 

3.1 Research Approach and Hypotheses 

Defect Discrimination: The main goal of inspection 

meetings in our study is to identify false positives that 

were reported as defects during individual preparation. As 

false positives increase the rework effort it is reasonable 

to evaluate techniques for their reduction. However, de-

fect discrimination suffers from the risk of labeling true 

defects as false positives and removing them from the 

final, collated defect list. Usually, the costs associated 

with the loss of one true defect are considerably higher 

than the costs of keeping one false positive. However, 

these costs depend on the specific context of the inspec-
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tion and have to be assessed individually. In this paper, 

we do not assume any specific distribution for these costs 

but simply compare absolute number of removed false 

positives and lost true defects. We calculate these values 

for paper-based and tool-based inspection meetings and 

expect that tool-supported meetings are able to remove 

more false positives while losing less true defects since 

the tool allows more objective and transparent discussion 

and voting. 

Inspection Meeting Effort: Due to the tool support we 

expect a reduction in meeting effort, as the inspectors can 

work concurrently and are more focused on important 

issues. We analyze an efficiency criterion indicating the 

number of false positives removed per time unit. Fur-

thermore we compare the effort of tool-based meetings to 

the effort of paper-based meetings and expect tool-based 

meetings to be more cost-efficient. 

Fully Automated Defect Discrimination: We further 

evaluate a so-called “Automated Defect Discrimination” 

method based on simple statistical measures for diverging 

voting results. We discuss how different threshold pa-

rameters influence the relationship between false positives 

removed and true defects lost and investigate whether 

there is a threshold with superior meeting output com-

pared to actual discussion in a meeting regarding 

(a) eliminating less true defects and (b) eliminating more 

false positives. 

3.2 The Requirements Inspection Experiments 

In our previous work we have performed a family of 

experiments for the empirical evaluation of various re-

search issues in software inspection. Details on these ex-

periments can be found in [14] and [9].  

Table 1: Description of Experiment Family. 
Experiment A B C 

Year 1999-2000 2000-2001 2002 

# CBR-Inspectors 86 47 37 

# CBR-Teams 16 9 7 

Average Team Size 5.4 5.9 5.3 

# Reference defects 86 97 93 

Inspection Meeting Yes No Yes 

Inspection Process Manual Manual GRIP 

Table 1 summarizes key information about the three 

related experiments. The first two experiments A and B 

studied the influence of different reading techniques on 

inspection performance. For details on Experiments A and 

B see [3, 4] for a comparison of the two experiments see 

[10]. Experiments A and B used checklist-based reading 

(CBR) and scenario-based reading techniques. For tool 

evaluation in Experiment C we decided to select the CBR 

technique in order to have a sufficient sample size. 

We regard the three experiments as an experiment 

family due to a number of similarities: (a) the experimen-

tal design (i.e., controlled experiment in an academic en-

vironment), their operation (including planning and tuto-

rial activities), and the experiment administration team 

were similar in all experiments, (b) the subjects participat-

ing in the experiment were all selected from computer 

science students at Vienna University of Technology, and 

(c) checklists, requirements documents, and seeded de-

fects were very similar for all experiments.  

As far as inspection meeting performance is con-

cerned, we can only compare the results of Experiment A 

and C. However, the comparison has to be done with cau-

tion as inspectors in Experiment A were asked to identify 

new defects during the meeting. In Experiment C the 

meeting purpose was only to discriminate between false 

positives and true defects. 

3.3 Experimental Tool-Supported Meeting 

Process in Experiment C 

Experiment C involved 37 undergraduate computer 

science students and almost identical requirements docu-

ments as Experiments A and B. The inspection object was 

a 47-page requirements specification, containing about 

13,000 words, 16 UML diagrams, and 97 seeded defects. 

All seeded defects were found before the experiment dur-

ing the development of the requirements document in 

numerous quality assurance iterations. All seeded defects 

could be found by the inspectors without referring to 

additional documents. Please refer to [3] and [10] for 

details on these aspects of the experiment. 

In the following, however, we focus on the specifics of 

tool support for inspection meetings. Experiment C con-

sisted of an individual defect detection activity and an 

inspection meeting. Details on the individual defect detec-

tion step can be found in [14]. 

The planning step for the experiment included tailoring 

the tool by preparing the requirements document for de-

fect reporting and customizing the individual inspection 

process in the groupware tool. A detailed description of 

the tailoring process is given in [15]. Three tutorials were 

prepared to teach the inspection process and the tool to 

participants: 1) a UML tutorial to ensure the proper un-

derstanding of the notations used in the requirements 

document, 2) a tutorial to teach the checklist-based read-

ing technique, and 3) a tutorial explaining the use of the 

groupware tool. 

Although GRIP supports both synchronous as well as 

asynchronous inspections, the entire inspection process 

was carried out synchronously to increase control over the 

experiment environment. During all process steps an in-

spection manager supervised each team and was respon-

sible for the accuracy and feasibility of data collected 

from the inspectors.  

Between individual defect detection and the inspection 

meeting the inspection manager had to generate a collated 
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defect list from all individually reported defects. As this 

task is supported by GRIP, this (minor) effort is ignored 

in the analysis. 

Voting on Defect

Severity

Discussion of

Selected Defects

Automated

Elimination of

Defects

Voting on Defect

Severity

Figure 3. Inspection Meeting Process  
in Experiment.

Figure 3 summarizes the individual activities per-

formed during the inspection meeting experiment. In a 

first step participants individually assign a severity level 

between 1 (i.e., no defect) and 5 (i.e., major defect) to 

each reported defect. The tool then aggregates all the in-

dividual votes for each defect and presents intuitive and 

illustrative (e.g., traffic light) measures for the homogene-

ity of submitted votes. The inspection manager can thus 

easily identify reported defects where all inspectors have 

similar opinion regarding severity (in this case no further 

discussion is necessary) or (more importantly) spot de-

fects where opinions are diverging. The definition of ho-

mogeneous and heterogeneous voting can be adjusted via 

thresholds. For the defects with diverging votes the in-

spection manager then initiates an oral discussion in 

which the team has to agree upon a severity level for the 

discussed defect. Finally, inspectors assess the defect 

type. The results of this second voting procedure are not 

analyzed in detail in this paper. 

3.4 Threats to Validity 

As any empirical study, this experiment exhibits a 

number of threats to internal and external validity. While 

internal validity investigates if the treatment causes the 

outcome, external validity deals with generalization [27]. 

Internal Validity. The primary threat to internal valid-

ity is selection. This comes from the selection of subjects 

and their assignments to particular treatments. In Experi-

ments A and B, we used randomization to avoid system-

atic bias from selection. In Experiment C selection was 

not an issue as we only had one treatment. However, to 

ensure comparability of inspection team performance we 

randomly selected students to form teams. 

A second threat to internal validity is process confor-

mance. However, the guidance provided by the group-

ware tool and the supervision by the inspection manager 

enabled us to easily enforce process conformance in Ex-

periment C. 

A third threat to internal validity arises from the fact 

that we did not control the inspection effort. However, 

effort also represents an important dependent variable we 

want to analyze. We thus think that letting the inspectors 

decide how much effort they want to spend on the inspec-

tion meeting is reasonable in a controlled, synchronous 

inspection. However, effort values of Experiment A and C 

cannot be directly compared as the emphases of the meet-

ing steps where somewhat different.  

A fourth threat to internal validity is data consistency.

As with process conformance, data consistency was much 

easier to ensure during Experiment C due to tool support. 

In Experiments A and B, inspection supervisors checked 

the completeness and validity of the collected defect and 

effort data immediately after each step. 

External Validity. With respect to external validity,

we took specifications from a real-world application con-

text to develop an inspection object representing a realis-

tic situation. The document size and defect density were 

somewhat above the levels from other reported experi-

ments [1], but not particularly high compared to docu-

ments in industrial settings [8]. Moreover, we used in-

spection activities that had been implemented in a number 

of professional development environments [19]. 

The subjects were students participating in a university 

class. As pointed out in the literature [24] students may 

not be representative of real developers. However, Höst et

al. [16] observe no significant differences between stu-

dents and professionals for small tasks of judgment. Ac-

cording to Tichy [25] using students as subjects is accept-

able if students are appropriately trained and the data is 

used to establish a trend. These conditions are both met in 

our case. 

4. Results 

In this section we describe key empirical results re-

garding tool support for inspection meetings. We analyze 

defect discrimination performance (a) including team dis-

cussions and (b) fully automated and present information 

on meeting effort (see hypotheses in Section 3.1). We also 

compare the results from the tool-based meeting to data 

from paper-based inspections where possible. 

4.1 Defect Discrimination 

Based on our experience with inspection meetings and 

the prevailing opinion in recent research, inspection meet-

ings promise little benefits with respect to the detection of 

new defects. Inspection meetings can however reduce 

rework effort by removing false positives reported during 

individual defect detection. As argued before the focus of 

this empirical study is on defect discrimination perform-

ance. With respect to the identification of false positives 

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03) 
1527-1366/03 $ 17.00 © 2003 IEEE 



we focus exclusively on the data from Experiment C as 

detailed information regarding false positives is not avail-

able for Experiment A. 

Table 2 summarizes the number of total defect reports 

removed, the number of false positives eliminated and the 

number of true defects lost during meeting for each team 

participating in Experiment C. Values given in Table 2 

show the percentage of the appropriate base value (e.g., 

team 1 reduced the number of total defect reports by 

25.7%, the number of false positives by 30.1% and the 

detected reference defects by 15.6%). 

Table 2: Reduction of total defect reports,  
elimination of false positives, and loss of  

reference defects in percent for Exp C (%). 

 Total 

Reports 

False

Positives 

Reference

Defects 

Team 1 25.7 30.1 15.6 

Team 2 6.1 8.2 1.9 

Team 3 15.7 24.0 1.6 

Team 4 9.0 16.2 0.0 

Team 5 3.7 6.3 0.0 

Team 6 1.9 4.3 0.0 

Team 7 13.4 19.6 0.0 

Mean 10.8 15.5 2.7 

Std.dev. 8.2 9.7 5.7 

Table 2 illustrates that between 4% and 30% of the re-

ported false positives were removed during the inspection 

meeting. Furthermore only few reference defects were 

lost (with the exception of team 1). Overall tool-supported 

inspection meetings proved to be a viable means for dis-

criminating between true defects and false positives. 

Table 3 documents the impact of inspection meetings 

on the number of true defects detected in more detail. As 

we do have appropriate data for Experiment A, we can 

compare paper-based and tool-based inspection meetings 

with respect to this criterion. 

Table 3: Net gain of reference defects (%) 
 for ExpA and ExpC. 

Reference  

defects lost 

Reference  

defects gained 

Net gain of  

reference de-

fects 
Mean Std.dev. Mean Std.dev. Mean Std.dev. 

ExpA 32.2 19.2 23.2 17.5 -8.9 33.9 

ExpC 2.7 5.7 n/a n/a -2.7 5.7 

Please note however an important difference between 

the meeting goals in Experiments A and C. While we 

aimed at also identifying new reference defects in Ex-

periment A, we focused exclusively on defect discrimina-

tion in Experiment C and consequently did not detect any 

new defects. Details on the meeting performance of Ex-

periment A can be found in [11]. When comparing the net 

gain criterion we can observe that tool-supported inspec-

tion meetings outperform paper-based inspection meet-

ings. Although there were new defects identified during 

inspection meetings in Experiment A, these gains could 

by far not outweigh the significant meeting losses. In the 

case of Experiment C there were no meeting gains but 

overall meeting losses were on average reduced by a fac-

tor three. It is further important to observe that the stan-

dard deviation of meeting performance is very high in 

Experiment A, indicating that meeting performance var-

ied a lot. In Experiment C the clearer and simpler focus of 

meetings also reduced standard deviations considerably. 

4.2 Automated Defect Discrimination 

In the previous section we described meeting perform-

ance with respect to the meeting process including discus-

sion among participants on defects with diverging votes. 

However, as a comparable benchmark to the performance 

of these meetings we apply a simple automated defect 

discrimination technique that is supported by GRIP. The 

advantage of this technique is a reduction of meeting ef-

fort as no discussions need to take place. 

This automated defect discrimination is based on the 

inspectors’ votes for defect severity. The inspection man-

ager can define a threshold for the average team’s vote on 

a defect’s severity. If this vote is below the threshold the 

defect is classified as false positive and removed from the 

defect list; if the vote is above the threshold the defect is 

classified as a true defect and included in the final defect 

list.

0%

20%

40%

60%

80%

100%
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Team 5 Team 6 Team 7

Figure 4: Automated Defect Discrimination  
in percent of total false positives for Exp C.

We evaluated different thresholds in order to illustrate 

the trade-off between the removal of false positives and 

the loss of reference defects. Figure 4 shows that the num-

ber of eliminated false positives increases with a more 

stringent threshold. 

However, for the determination of the optimal thresh-

old we have to consider the tradeoff between eliminated 

false positives and lost true defects. If we use a low 

threshold we ensure that very few reference defects are 
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lost but also reduce the number of false positives identi-

fied. If we use a high threshold, we observe the opposite 

effect. Figure 5 summarizes the dependency of most 

important meeting performance criteria on the definition 

of this threshold. 
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Figure 5: Dependence of eliminated false  
positives (Elim. FP), lost reference defects (Elim. 

RD) and detected reference defects (Detected 
RD) for different thresholds. 

4.3 Meeting Effort 

Finally we analyze the meeting effort invested in Ex-

periments A and C. As we applied somewhat different 

meeting processes and defined different meeting goals the 

effort values are not directly comparable. Nevertheless 

Table 4 shows that the meeting in Experiment C took 

considerably less time than the meeting in Experiment A. 

Furthermore the standard deviation is reduced to a rea-

sonable level, while it was very high for Experiment A. In 

the last row Table 4 further shows that we could even 

further decrease meeting effort by using the automated 

defect discrimination approach. 

Table 4: Average effort of meetings in minutes 
for all teams in ExpA and ExpC. 

 Average  

Effort 

Std.dev. 

ExpA 293 129 

ExpC 100 5 

ExpC (automated) 80 5 

5. Conclusions and Further Work 

In this paper we have described an empirical evalua-

tion of automating software inspection meetings. The re-

search integrates concepts from the areas of computer-

supported cooperative work, requirements engineering, as 

well as verification and validation. We focused on the 

performance of tool-supported meetings where the main 

purpose was to discriminate between false positives and 

true defects to reduce the rework effort after inspection. 

Our empirical data illustrates that tool support results in 

good discrimination performance and reduces the number 

of false positives by 15% on average. 

However, it is even more important to evaluate the 

number of lost true defects, as these meeting losses incur 

usually higher costs than any false positive not removed 

during meeting. With respect to this criterion the tool-

supported meeting process shows, in fact, very good per-

formance and considerably outperforms comparable re-

sults from paper-based inspection meetings (2.7% vs. 

32.2% true defects lost on average). 

Another advantage of tool-support is that it offers 

additional, statistically oriented techniques based on indi-

vidual inspectors’ votes to discriminate automatically 

between false positives and true defects. We have ex-

perimented with different thresholds and illustrated the 

trade-off between removal of false positives and loss of 

true defects. Our data shows that simple techniques for 

automated defect discrimination show discrimination per-

formance comparable to discussion-based meetings but 

further reduce meeting effort. 

However, especially for such automated defect dis-

crimination techniques but also for the general planning 

step of traditional inspection meetings, more explicit deci-

sion support is required in order to enable inspection man-

agers to determine thresholds for discrimination and to 

optimize the effort invested into inspection meetings. An 

economic model including the costs of false positives and 

of lost true defects is necessary to appropriately optimize 

the trade-offs between false positives not removed and 

true defects lost. 

Although the performance of tool-supported inspection 

meetings reported in this paper is promising the number 

of unidentified false positives is rather high. A possible 

explanation is the fact that we used a requirements speci-

fication for inspection. Due to the nature of requirements 

the definition and exact identification of defects is much 

harder. Further analysis of our empirical data also shows 

that for defect reports in the introductory chapter of the 

requirements document, it turned out to be more difficult 

to discriminate between false positives and true defects 

than for defect reports in object diagrams or data models. 

An efficient discrimination of true defects and false posi-

tives thus depends highly on the exact and understandable 

definition of a defect. However, defect definitions repre-

sent a challenge in the case of rather informal, early life-

cycle software development products (like requirements 

specifications).

The clear and simple meeting definition (defect dis-

crimination instead of discrimination plus synergy) used 

in the experiment helped inspectors to focus on the impor-

tant tasks and reduced performance variation considera-

bly. We, therefore, think that these empirical results fur-

ther support the argument to focus inspection meetings on 

defect discrimination rather than on detecting new de-

fects. For this purpose tools like GRIP can efficiently and 
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effectively support inspection meetings. 
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