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Abstract

Physics-based animation programs can often be modeled 

in terms of hybrid automata.  A hybrid automaton 

includes both discrete and continuous dynamical 

variables.  The discrete variables define the automaton's 

modes of behavior. The continuous variables are 

governed by mode-dependent differential equations.  This 

paper describes a system for specifying and automatically 

synthesizing physics-based animation programs based on 

hybrid automata. The system presents a program 

developer with a family of parameterized specification 

schemata. Each scheme describes a pattern of behavior 

as a hybrid automaton passes through a sequence of 

modes.  The developer specifies a program by selecting 

one or more schemata and supplying application-specific 

instantiation parameters for each of them.  Each scheme 

is associated with a set of axioms in a logic of hybrid 

automata. The axioms serve to document the semantics of 

the specification scheme.  Each scheme is also associated 

with a set of implementation rules. The rules synthesize 

program components implementing the specification in a 

general physics-based animation architecture.  The 

system allows animation programs to be developed and 

tested in an incremental manner. The system itself can be 

extended to incorporate additional schemata for 

specifying new patterns of behavior, along with new sets 

of axioms and implementation rules.  It has been 

implemented and tested on over a dozen examples. We 

believe this research is a significant step toward a 

specification and synthesis system that is flexible enough 

to handle a wide variety of animation programs, yet 

restricted enough to permit programs to be synthesized 

automatically. 

1.  Introduction 

Physics-based animation programs are useful in a variety 

of contexts, including science, engineering, education and 

entertainment. For example, in science, they are used to 

investigate the behavior of dynamical systems. In 

engineering, they are used to help design vehicles, 

machinery and other mechanical devices. In education, 

they are used to teach basic principles of physics. In 

entertainment, they are used in games involving cars, 

planes, spaceships and other moving objects. Such 

programs are usually constructed by hand, in conventional 

programming languages, such as C++, possibly augmented 

with a physics-based animation toolkit. Unfortunately, 

manual construction of physics-based animation programs 

is expensive, time-consuming and highly prone to error. 

A considerable portion of the difficulty results from the 

need to track and manage instantaneous changes in the 

states of objects and the equations and constraints that 

govern their behavior. For example, when one rigid body 

collides with another, the objects’ states of motion may 

change instantaneously. If the contact persists for a period 

of time, the governing equations of motion and 

constraints may change as well. Similar instantaneous 

changes occur when an autonomous agent switches from 

one control mode to another. For example, when the 

driver of a car depresses or releases the accelerator or 

brake, the car’s acceleration may change instantaneously. 

In previous work, the author and his students developed a 

system for specification and synthesis of numerical 

simulation programs for physics-based animation 

applications. [Ellman et al, 2002], [Ellman et al, 2003].  

The system allows a developer to specify the geometry, 

shading, lighting and camera angles of a scene in 3D 

Studio Max® and specify the dynamics of the scene in 

Mathematica®. A Mathematica program processes these 

specifications and generates a numerical C++ program that 

interleaves simulation and rendering to generate a real-

time animation of the specified scene.  This work drew 

upon the field of analytical dynamics [Baruh, 1999], in 

which motion is governed by differential equations 

involving forces and constraints, for modeling physical 

systems. The equations were assumed to remain fixed 

over time, resulting in continuous and smooth motion, 

ignoring the complexities described above.  

We now report on research extending the system to 

hybrid automata [Van Der Schaft and Schumacher, 2000] 

A hybrid automaton includes both discrete and continuous 

dynamical variables.  The discrete variables define the 

automaton's modes of behavior. The continuous variables 

are governed by mode-dependent differential equations. 

Hybrid automata are suited to modeling physical systems 

with instantaneous changes in forces, constraints and 

equations. They are also suited to modeling some types of 

autonomous behavior by agents operating in a physics-

governed environment.  
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The long-term goal of this research is to develop a 

specification language and synthesis system that is 

general enough to handle a wide variety of animation 

programs, yet restricted enough to permit programs to be 

synthesized automatically. We are taking an incremental 

approach in working toward this goal. We began by 

developing a family of parameterized specification 

schemata. Each scheme describes a pattern of behavior as 

a hybrid automaton passes through a sequence of modes.  

A developer can specify a program by selecting one or 

more schemata and supplying application-specific 

instantiation parameters for each of them. Each scheme 

has a declarative interpretation, and can be combined with 

other schemata in an order-independent fashion. We have 

associated each scheme with a parameterized sentence in 

a logic of hybrid systems. The sentence serves to 

document the semantics of the specification scheme. We 

have also developed sets of rewrite rules that implement 

each of the specification schemata in a general physics-

based animation architecture. Finally, we have tested the 

system on over a dozen examples. Our approach is 

extendable. New specification schemata and synthesis 

rules can be added as they are developed, without 

impacting the semantics of existing schemata and the 

functionality of existing synthesis techniques.  We intend 

to expand, generalize and unify the specification schemata 

and synthesis techniques over time. We expect the 

process will lead eventually to a logic-based specification 

language and synthesis system with a combination of 

expressiveness and automation that makes it useful for 

developing animation programs in real-life applications.  

2. Examples 

Ball on Steps: A ball bounces and rolls down a gradually 

inclined series of steps. The system has two modes of 

operation: bouncing and rolling. In the bouncing mode 

there are no constraints on the ball’s motion. In the rolling 

mode, the ball is constrained to roll on a step without 

skidding. The system begins in a bouncing mode. Each of 

the first several times the ball strikes a step, it undergoes a 

transition in which the bouncing mode is preserved and 

the ball’s linear and angular velocities undergo 

instantaneous changes as a result of the collision. The 

velocities are updated according to equations expressing 

conservation of linear and angular momentum and loss of 

energy according to the Coulomb friction model. When 

the ball’s kinetic energy at impact falls below a threshold, 

it makes a transition from the bouncing mode to the 

rolling mode. Eventually the ball rolls off the step and 

undergoes a transition back into the bouncing mode as it 

proceeds to bounce on the next step, repeating the cycle.

Robot on Track: A robot rides on a four-wheeled cart 

moving around a circular track. The robot has one arm, 

consisting of an upper arm, a forearm and a hand.  A ball 

sits on the track directly in the path of the robot. Each 

time the robot encounters the ball, it stops, reaches out, 

picks up the ball, and places it directly behind itself on the 

track. It proceeds on its way around the track until it 

encounters the ball again and repeats the cycle, over and 

over, forever. The robot has ten modes of operation. It 

cycles through these modes in a fixed order. In each 

mode, the robot’s joints and axles are constrained to rotate 

with fixed (possibly zero) angular velocities.  The angular 

velocity of each joint depends on the current mode. 

Another mode-dependent constraint requires the ball to 

translate and rotate along with the robot’s hand (while the 

ball is in the hand) and to remain motionless relative to 

the track (while the ball is on the track). 

Dueling Spaceships: Two spaceships travel around a 

planet in elliptical orbits according to Newton’s law of 

gravitation. Each spaceship carries a torpedo inside it. 

When one ship moves within its firing range of the other, 

it launches its torpedo with a carefully chosen speed and 

direction. The torpedo moves under the influence of 

gravity along its own elliptical orbit until it collides with 

the other spaceship. After the collision, the torpedo 

returns instantly to its resting point inside its parent 

spaceship, ready to be fired again. Each torpedo has two 

modes of operation. In its rest mode, a torpedo is 

constrained to move with the same velocity as its parent 

spaceship. It its launched mode, a torpedo’s motion is 

unconstrained, subject only to the force of gravity. 

3.  Hybrid Automata

A hybrid automaton consists of a finite set M of modes, 

(parameterized by a set of nominal-valued mode 

variables), a set S ⊆ RN of states (parameterized by a set 

of real-valued state variables), a “flow” function 

f:M×S×R→S; and a set P of transition operators 

p=(g,rm,rs), in which g:M×S→{True,False} is a “guard” 

and rm:M→M and rs:S→S are mode and state “reset” 

functions.1

A behavior of a hybrid automaton is a path through M×S

governed by the flow function and the transition 

operators. As long as automaton A resides in a given 

mode, its behavior is described by the flow function. Thus 

if A is in mode m and state s at time t, and it remains in 

mode m for time ∆, it will be in state f(m,s,∆) at time t+∆.

A flow function is usually represented by a set of 

differential equations. The transition operators describe 

1The hybrid automaton model presented here is motivated 

by the presentation in [Van Der Schaft and Schumacher, 

2000]; however, some details are simplified or modified.  
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when and how the mode and state variables can change 

instantaneously. If an automaton A is in mode m and state 

s at time t, and for some transition operator p=(g,rm,rs),

g(m,s)=True, then A can make a transition to mode rm(m) 

and state rs(s) at time t. Whenever one or more guards are 

true, the automaton makes one of the allowed transitions.  

Formally, a behavior β is a tuple (mβ, sβ, Tβ, Eβ, ≤β, Nβ)

where mβ:Tβ→Mβ; sβ:Tβ→Sβ, and the set Tβ is a time

evolution, constructed from the real numbers R by 

removing a subset U of R and replacing each element t of 

U with a set St={(t,1),…,(t,nt)}. This device allows the 

path functions m and s to take multiple values at the 

points in time at which transitions occur.  The set Eβ of 

event times is the union of St for all t∈U. The relation ≤β

is the smallest total ordering on Tβ that includes the 

restriction of the usual ordering ≤ of R to R-U, and such 

that for all t and u in R-U, and all integers i and j in [1..nt],  

(t,i) ≤β (t,j) if i < j; u ≤β (t,i) if u < t; and (t,i) ≤β u if t < u. 

The immediate successor relation Nβ on Tβ×Tβ is defined 

in terms of ≤β so that Nβ(u,v) if and only if u=(t,i) and 

v=(t,i+1) for some t in R-U and integer i in [1..nt-1].  If 

Nβ(u,v) then we sometimes use the notation t  for u and t

for v. The symbols and  are mnemonics for the 

relationship between an event time t and its (unique) 

immediate successor t , when an immediate successor 

exists. A time evolution in the neighborhood of a set Et of 

event times in shown below. 

The general scheme of a program for simulation of hybrid 

automata is shown below. The procedure 

Simulate(p,c,m,s,t1,t2,∆) takes the following inputs: the 

program initialization parameters p, the state c of the 

interactive user’s control device, and the mode m and 

state s at time t1. It returns the updated mode and state at 

time t2 using ∆ as its initial step size in a search for 

transition points. It begins by integrating a mode-

dependent system derivative function from t to t+∆. Then 

it applies each element of an array of Boolean-valued 

guard functions to the resulting state. If any of the guards 

return true, the program conducts a bisection search 

between t and t+∆ to find an approximation of the earliest 

time τ and state σ at which some guard Guard[i] became 

true. Next it uses ModeResetFunction[i] and 

StateResetFunction[i] to update the mode m and state σ

at time τ. In addition, the procedure repeatedly selects and 

applies another pair of mode and state reset functions as 

long as there exists a pair with a true guard. Finally, the 

algorithm proceeds to continue the simulation from τ to t2

using the updated mode and state. The simulation 

architecture can be instantiated in the context of a given 

application problem by synthesizing the system derivative 

function Derivative(p,c,m), guard predicates Guard[i], 

and mode and state functions ModeResetFunction[i] and 

StateResetFunction[i].

4.  Specification

The system presents a human developer with a family of 

schemata from which he/she can construct a specification 

of a physics-based animation program. Each scheme 

represents a pattern of behavior that occurs commonly in 

physics-based animation programs. In particular, each 

scheme describes a sequence of one or more transitions 

through partially specified modes. The schemata have 

parameters that allow a developer to instantiate them in 

the context of an application problem. These parameters 

describe conditions for activating the sequence, passing 

through each mode in the sequence, and reinitializing the 

mode and state at each transition point.2

2 We discuss only specifications of guards and mode and 

state reset functions in this paper. Specifications of the 

system derivative function are discussed in [Ellman et al, 

2002] [Ellman et al, 2003].  

Simulate(p,c,m,s,t1,t2,∆):

   If (t1≥t2) Then Return((m,s)). 

   Else 1. Let r = Integral(Derivative(p,c,m),s,t1,t1+∆).

          2. If (∃ i ∈ [1..n]) Guard[i](p,c,m,r,t1+∆)

              Then  a. Let (σ, τ , i) = Locate(p,c,m,s,t1,∆, r, i). 

                        b. Let (m’,s’) = Transition(i,p,c,m,σ,τ).

                        c. Simulate(p,c,m’, s’, τ, t2, Min[t2-τ, ∆]). 

              Else   Simulate(p,c,m,r,t1+∆1,t2,Min[t2-(t1+∆), ∆]). 

Locate(p,c,m,s,t,∆,r,i):

   If  (∆ < ε)  Then Return(r,t,i). 

       Else  a. Let q = Integral(Derivative(p,c,m),s,t,t+∆/2). 

          b. If  (∃ j ∈ [1..n]) Guard[j](p,c,m,q,t+∆/2) 

           Then Locate(p,c,m,s,t,∆/2, q, j). 

           Else  Locate(p,c,m,q,t+∆/2,∆/2, r, i). 

Transition(i,p,c,m,s,t): 

    1. Let m’ = ModeResetFunction[i](p,c,m,s,t). 

    2. Let s’ = StateResetFunction[i](p,c,m,s,t). 

    3. If  (∃ j ∈ [1..n])  Guard[j](p,c,m’,s’,t) 

            Then Return(Transition(j,p,c,m’, s’, t’)). 

Else  Return((m’, s’)). 

t ∈ U 

(t,1) (t,nt)…
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4.1 A Logic of Hybrid Automata 

Each scheme is associated with one or more axioms. The 

axioms serve to document the semantics of the scheme. 

They are expressed in a timed hybrid linear temporal 

logic. Sentences are constructed from primitive formulae; 

Boolean operators; universal ∀ and existential ∃
quantification over the real numbers R; and the following 

temporal operators: . (freeze), χ (next),  (always), 

(eventually)  and U (until).  A primitive formula 

ϕ(m,s,t1,…,tk,u1,…,un)  is an equation or inequality of 

expressions over mode (m) and state (s) functions, time-

valued variables (t1,…,tk) and real-valued variables 

(u1,…,un). If  β=(mβ,sβ,Tβ,Eβ,≤β,Nβ) and t∈Tβ then 

β tψ[ρ] means that behavior β satisfies formula ψ at time 

t∈Tβ with assignments ρ:V→R∪Tβ to the universe V of 

free variables, some of which may occur in ψ. The 

expression ρ(v t) is the result of updating ρ with the 

assignment v t. The expression β ψ means that behavior 

β satisfies ψ. The expression A ψ means that hybrid 

automaton A satisfies ψ. The satisfaction relations are 

defined as follows:3

• β tϕ(m,s,t1,…,tk,u1,…,un)[ρ] if and only if 

ϕ(mβ,sβ,ρ(t1),…,ρ(tk),ρ(u1),…,ρ(un)) is true in the 

standard4 model  of real arithmetic. 

• β t(ϕ→ψ)[ρ], β t(ϕ∧ψ)[ρ], β t(ϕ∨ψ)[ρ]  and 

β t(¬ψ)[ρ] are defined as in classical logic. 

• β t((∃u)ψ)[ρ]  if and only if there exists some r∈R

such that β tψ[ρ(u r)]. 

• β t((∀u)ψ)[ρ]  if and only if for all r∈R,

β tψ[ρ(u r)]. 

• β t(v . ψ)[ρ]  if and only if β tψ[ρ(v t)].

• β t(χ ψ)[ρ] if and only if there exists some v∈Eβ

such that Nβ(t,v)  and β vψ[ρ]. 

• β t( ψ)[ρ] if and only if there exists some v∈Tβ

such that v≥βt and β vψ[ρ]. 

• β t( ψ)[ρ] if and only if for all v∈Tβ such that v≥βt,

β vψ[ρ]. 

• β t(ϕ U ψ)[ρ] if and only if there exists u∈Tβ such 

that u≥βt and β uψ[ρ] and for all v∈Tβ such that 

t≤βv<βu, β vϕ[ρ],  or else for all v∈Tβ such that t≤βv,

β vϕ[ρ]. 

• β ψ if and only if β tψ[ρ] for all ρ and t∈Tβ.

• A ψ if and only if β ψ for all behaviors β of A.

3 The logic presented here draws upon features of logics 

discussed in [Alur and Henzinger, 1992] and [Davoren 

and Nerode, 2000]. 
4 The standard model of real arithmetic must be extended 

to include a binary time difference operation such that if 

t1∈R and u=(t2,i)∈Tβ, then t1-u=t1-t2 and u-t1=t2-t1.

In the following sections, we define each specification 

scheme in terms of the logic presented above, and provide 

a brief paraphrase of its semantics. We also show how 

each scheme can be used in specifying one of the example 

animation scenarios introduced above.  

4.2 Equational Reset Scheme 

The EquationalReset scheme allows a developer to 

specify a single transition operator. The developer 

supplies a Boolean valued expression g over state 

variables, mode variables and time, to specify the guard of 

the transition operator. He/she also supplies a set e of 

equations that relate the values of mode and state 

variables before and after the transition, to specify the 

operator’s mode and state reset functions.  

EquationalReset(g, e):  

(t  . g(m,s,t ) → χ (t  . e(m, s, t , t )))

Paraphrase: If the guard g(m,s,t ) is satisfied at time t ,

then the system undergoes a transition to a time t such

that N(t ,t ) and equations e(m,s,t ,t ) are satisfied 

The EquationalReset scheme can be illustrated in terms of 

the “Ball on Steps” example5. (See Appendix.) The ball 

has two modes of operation, bouncing and rolling, and 

three transitions: (1) Bouncing→Bouncing; (2) 

Bouncing→Rolling; (3) Rolling→Bouncing. The 

specification of the first transition is shown in the 

Appendix. In this instance of the EquationalReset

5 Keywords of the specification language are shown in 

boldface. The language includes terms for the linear and 

angular positions and velocities of objects. (E.g., 

AbsTrans and AbsLV respectively refer to an object’s 

absolute position and absolute linear velocity). The 

language also includes predicates for asserting various 

levels of continuity and smoothness in reset equations 

(e.g., Continuity, PositionContinuity, VelocityContinuity),

as well as predicates for asserting that a transition must 

enforce the position or velocity constraints that apply in 

the new mode. (E.g.,PositionConstraintsInMode,

VelocityConstraintsInMode). The examples also use the 

following Mathematica notation: The operator [ ] 

indicates function application. A vector is represented as 

{x, y, z}. The x, y and z components of vector v are 

v[[1]], v[[2]] and v[[3]].  A transformation rule Lhs->Rhs 

describes how an expression matching Lhs is replaced 

with the instantiation of Rhs. A pattern variable in Lhs 

has an underscore at the end of its name. The expression 

E /. R indicates the application of rule R to expression E. 
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scheme, the Guard asserts that the transition will occur 

when the ball is bouncing on the first step; the ball is 

moving downward; the lowest point of the ball is below 

the height of the step; and the ball’s energy at impact is 

above a threshold. The ResetEquations assert that after 

the transition, the ball continues to bounce on the first 

step, and the state variables are reset so that the ball 

recoils from the collision losing a small amount of energy, 

but conserving linear and angular momentum. The “Ball 

on Steps” example includes three instances of the 

EquationalReset scheme, corresponding to the three 

transitions described above.  

4.3 Specified Termination Scheme

The SpecifiedTermination scheme allows a developer to 

specify two or more transition operators that take the 

system through a sequence of partially specified modes. 

The developer supplies a guard expression g and a set e of 

reset equations to define a transition operator to initiate 

the sequence. He/she also supplies an additional 

termination condition c and set f of reset equations to end 

each of the phases of the sequence. A termination 

condition c or reset equation set f may involve the time, 

mode and state values at present and earlier event times in 

the sequence, and relationships among them. In the single 

phase version of this scheme, the developer provides only 

one (c,f) pair. In the multi-phase version he/she provides 

one or more (c,f) pairs.  

SpecifiedTermination(g, e, (c, f) +):

Paraphrase: If the guard g(m,s,v ) is satisfied at time v

then the system undergoes a transition to a time v such

that N(v ,v ) and equations e(m,s,v ,v ) are satisfied. If 

condition c(m,s,v ,v ,t) is true at t=v  or some future time, 

then at the earliest t ≥v  satisfying c(m,s,v ,v ,t ), the 

system undergoes a second transition to a time t such that 

N(t ,t ) and equations f(m,s,v ,v ,t ,t ) are satisfied.

The SpecifiedTermination scheme can be illustrated in 

terms of the “Robot on Track” example. (See Appendix.) 

This instance of the SpecifiedTermination scheme 

describes one phase of the robot’s behavior. The Guard

tests that the robot is in the Drive mode (indicating the 

robot is driving around the track) and the mode variable 

Status[Clock] is Stopped (indicating that the robot has not 

yet started driving). The InitializationEquations set 

Status[Clock] to Running, and keep the robot in the Drive

mode. They preserve the positions of all the robot’s state 

variables; however, they modify the velocities of the state 

variables to accord with the velocity constraints that hold 

in the Drive mode. The TerminationCondition asserts that 

the robot remains in the Drive mode until it is close 

enough to the ball to pick it up. The 

FinalizationEquations put the robot in the Swing mode 

(rotating its shoulder joint to move its arm toward the 

ball), and stop the clock, thus preparing for the initiation 

of transitions governing the Swing phase.  The complete 

specification of the robot uses ten single-phase 

instantiations of the SpecifiedTermination scheme. The 

clock status variable is used to ensure that each phase is 

initiated only once per trip around the track. An 

alternative “Robot on Track” specification uses a single 

ten-phase instantiation of the SpecifiedTermination

scheme, and avoids the use of the clock status variable, 

resulting in fewer transitions per cycle. Unfortunately, 

this specification is too lengthy to include here. 

4.4 Temporal Projection Scheme 

The TemporalProjection scheme allows a developer to 

specify a limited type of planned action by an autonomous 

agent, as it passes through a sequence of behavior modes. 

The developer supplies a guard expression g and a set e of 

reset equations to define a transition operator to initiate 

the sequence. In addition, he/she defines a vector u of 

unknown control variables. Finally, the developer also 

supplies a duration condition d, target condition k and 

reset equation set f for each phase in the sequence. The 

specification asserts that the control values will be chosen 

to make each target condition true at the time specified by 

the corresponding duration condition, i.e., at the end of 

the corresponding phase. A duration condition d, target 

condition k or reset equation set f may involve time, mode 

and state values at present and earlier event times in the 

sequence, and relationships among them.  In the single 

phase version of this scheme, the developer provides only 

one (d,k,f) triple. In the multi-phase version he/she 

provides one or more (d,k,f) triples.  

TemporalProjection(g, u, e, (d, k , f) +):

Paraphrase: If the guard g(m,s,v ) is satisfied at time v

then there exists vector u of values such that the system 

undergoes a transition to a time v such that N(v ,v ) and 

equations e(u,m,s,v ,v ) are satisfied Eventually the 

system reaches a time t  satisfying duration condition 

(v  . g(m,s,v ) →
χ(v  . e(m,s,v ,v ) ∧

               ((t .¬c(m,s,v ,v ,t)) U  (t  . c(m,s,v ,v ,t ) ∧
χ(t . f(m,s,v ,v ,t ,t ))))))

(v  . g(m,s,v ) →
       (∃ u) χ(v  . e(u,m,s,v ,v ) ∧

 (t . d(u,m,s,v ,v ,t ) ∧
                                   k(u,m,s,v ,v ,t ) ∧

χ(t . f(u,m,s,v ,v ,t ,t )))))
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d(u,m,s,v ,v ,t ) and target condition k(u,m,s,v ,v ,t ).

Finally, the system undergoes a transition to a time t such

that N(t ,t ) and equations f(u,m,s,v ,v ,t ,t ) are satisfied.

The TemporalProjection scheme can be illustrated in 

terms of the “Dueling Spaceships” example. (See 

Appendix.)  Each torpedo has two modes of operation 

(Rest and Launched) and two transitions (R→L and 

L→R). These two pairs of transitions (one pair for each 

torpedo) are specified by two instances of the 

TemporalProjection scheme (one instance for each 

torpedo). The scheme instance for Torpedo1 is shown in 

the Appendix. The Guard is true when SpaceShip1 is 

within its firing range of SpaceShip2, and Torpedo1 is in 

its Rest mode. The UnknownValues (vX, vY, and vZ)

represent the velocity with which Torpedo1 will be 

launched. The SeedEquations specify the initial values to 

be used in an iterative numerical routine for determining 

the UnknownValues. The InitializationEquations assert 

that after the R→L transition, Torpedo1 will be in the 

Launched mode; Torpedo2 will be in the same mode as 

before the transition; the positions of all objects will be 

unchanged; the velocities of SpaceShip1, SpaceShip2 and 

Torpedo2 will be unchanged; and the velocity of 

Torpedo1 will be (vX,vY,vZ). The DurationCondition

asserts that Torpedo1 takes a specified period of time to 

reach its target. The TargetConditions assert that the 

positions of Torpedo1 and SpaceShip2 will be the same at 

the time the torpedo is supposed to reach its target. The 

FinalizationEquations assert that after the L→R

transition, Torpedo1 will be in the Rest mode; Torpedo2

will be in the same mode as before the transition; the 

positions and velocities of SpaceShip1, SpaceShip2 and 

Torpedo2 will be unchanged; and the position and 

velocity of Torpedo1 will be the same as the position and 

velocity of TorpedoDock1, the point inside SpaceShip1 at 

which it rests.  

The TemporalProjection scheme supports a considerable 

number of variations in the choice of UnknownValues,

and the way in which these values appear in other parts of 

the instantiated specification scheme. In the “Dueling 

Spaceships” example, the UnknownValues appear in the 

InitializationEquations, but not in the duration condition. 

Thus the duration of the Launched phase is known 

statically. In an alternative formulation of this problem, 

the unknown quantities are defined to include the 

direction of the torpedo’s initial velocity and the duration 

of its flight in the Launched phase, while the magnitude 

of its initial velocity is known statically. In the multi-

phase version of the TemporalProjection scheme, 

TargetConditions may be placed at the end of any of the 

phases. In the resulting problem, phase durations or phase 

initialization values must be chosen to achieve target 

conditions at multiple points in time.  

Parameters to the each of the specification schemata must 

meet some conditions. Reset equations e(m,s,t ,t ),

e(u,m,s,t ,t ), f(m,s,v ,v ,t ,t ) and f(u,m,s,v ,v ,t ,t ) must 

each be solvable for m(t ) and s(t ).  Termination 

condition c(m,s,v ,v ,t ) must be composed of inequalities, 

since exact numeric equalities cannot be reliably tested at 

run time. Duration condition d(u,m,s,v ,v ,t )   must be 

solvable for t  such that t ≥ v . Target condition 

k(u,m,s,v ,v ,t ) must be a conjunction of n equations, 

where n is the length of the vector u of unknown values. 

5.  Synthesis

The program synthesis procedure is divided into three 

stages. Each stage is implemented as a collection of 

rewrite rules in the Mathematica programming language. 

The first stage takes the program specification as input 

and generates a functional program as output. The 

functional program is expressed in a language with 

operations for higher-order numerical procedures such as 

integration and root extraction, as well as a variety of 

array operations, among others. The language is in 

Mathematica syntax and is not executable. It serves only 

as an intermediate stage in the program synthesis process. 

The functional program is constructed using a 

combination of program scheme instantiation and 

specialized rules for generating expressions solving 

systems of linear and nonlinear algebraic equations. The 

second stage takes the initial functional program as input 

and generates an optimized functional program as output.  

It uses a variety of program transformation rules to 

decompose numerical program components and optimize 

the flow of data to avoid unnecessary computation. 

Finally, the third stage takes the optimized functional 

program as input and generates a C++ program as output. 

It defines C++ function object classes implementing 

functional parameters to higher-order numerical 

procedures, and generates additional ordinary C++

functions that implement the optimized functional 

program. The underlying numerical routines are taken 

from the Numerical Recipes library [Press, et al. 1986]. 

The synthesized C++ program fits into a program 

architecture in which simulation is interleaved with 

rendering to generate real-time animation.

Each specification scheme is associated with a set of 

rewrite rules that synthesize the program components that 

comprise its implementation. Each rule set performs the 

following tasks: (1) Synthesize one or more transition 

operators, each composed of a guard predicate, a mode 

reset function and a state reset function; (2) Define any 

new mode or state variables needed to support the 

transition operators; (3) Define algebraic or differential 

constraints that govern the evolution of newly defined 
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state variables. The implementation rules generate 

programs that obey the Persistent Mode Convention [Van 

Der Schaft and Schumacher, 2000]. They synthesize 

transition rules that fire only when a transition is required 

by the specification.6

EquationalReset:  The rules implementing this 

specification scheme generate only one transition 

operator. The guard predicate is obtained from the 

definitional expansion of the Guard parameter of the 

scheme instance.  The mode reset function is obtained by 

symbolically solving the ResetEquations parameter to 

obtain an expression for the new values of the mode 

variables in terms of their old values. The state reset 

function is likewise synthesized by generating an 

expression for the new values of the state variables in 

terms of their old values. In this case, the system uses a 

set of rules for decomposing systems of equations into 

components, solving each component symbolically when 

possible, and otherwise generating expressions that solve 

the component using an LU decomposition routine (for 

linear equations) or a Newton-Raphson routine (for 

nonlinear equations).   

SpecifiedTermination: The rules implementing this 

specification scheme generate N+1 transition operators, 

where N is the number of phases in the instantiated 

scheme. In some respects, the rules implementing this 

scheme are similar to the rules implementing the 

EquationalReset scheme described above. Each guard 

predicate is obtained from the definitional expansion of a 

Guard or TerminationCondition parameter of the scheme 

instance. Likewise, each mode or state reset function 

operates by symbolically or numerically solving equations 

supplied in the InitializationEquations or 

FinalizationEquations parameters. The process is 

complicated by the fact that a termination condition or 

finalization equation may refer to mode variables, state 

variables and time values at earlier event times. The 

referenced values are accessed in the following way: 

Whenever a value at event time t is referenced by a 

subsequent guard or reset equation, the value is stored in a 

synthesized state variable by the state reset function that 

fires at event time t. The value of the synthesized state 

variable remains fixed as the system passes through the 

sequence of phases, until the termination condition or 

finalization equation obtains the needed value from the 

state variable in which it was stored. Another 

complication results from the way in which the scheme 

semantics define a context in which transitions should 

6 In order to instantiate the simulation program scheme, 

we must also synthesize the system derivative function.  

Our procedure for synthesizing the system derivative is 

described in [Ellman et al, 2002] and [Ellman et al, 2003]. 

fire. A guard that terminates the first phase, or a 

subsequent phase, should only fire when the 

corresponding phase is running, and not in any other 

context. This condition is enforced by rules synthesizing a 

mode variable to represent the number of the currently 

executing phase (if any) and arranging that each guard 

check the synthesized mode variable for an appropriate 

value before firing.

TemporalProjection: The rules implementing this 

specification scheme also generate N+1 transition 

operators, where N is the number of phases in the 

instantiated scheme.  The state reset function initializing 

the first phase must determine UnknownValues that will 

guarantee satisfaction of TargetConditions that apply at 

the ends of one or more phases. It synthesizes a shooting 

method for this purpose [Press, et al. 1986].  The shooting 

method uses a Newton-Raphson routine to solve a set of 

simultaneous nonlinear equations. The equations involve 

expressions that repeatedly initialize each phase; use a 

Runge-Kutta routine to integrate the system derivative to 

the end of the phase; and evaluate the target conditions in 

the resulting state. After computing the UnknownValues,

the state reset function uses them to initialize synthesized 

state variables. These state variables carry the 

UnknownValues forward in time to the points at which 

they are used by state reset functions to initialize phases.  

The duration of each phase is always determined in 

advance by the first state reset function via the shooting 

method. The phase durations are used to initialize 

synthesized clock variables. The termination of each 

phase is controlled by a guard predicate that references a 

clock variable as well as a synthesized phase number 

variable. In most other respects, the guard predicates and 

mode and state reset functions for each phase are 

implemented by rules that operate in a manner similar to 

those implementing the EquationalReset and 

SpecifiedTermination schemata described above.  

Some of the rules implementing the first state reset 

function, for a single-phase TemporalProjection scheme, 

are shown in the Appendix. These rules instantiate a 

program scheme for a shooting method. They refer to 

primitives such as NonLinearSolution (implementing the 

Newton-Raphson routine) and Integral (implementing the 

Runge-Kutta routine). The expressions in bold face are 

expanded by the synthesis rules. The expressions in 

normal face appear in the synthesized functional program.  

The implementation of the TemporalProjection scheme 

depends on an assumption about the way the system 

interacts with a user when the animation program is 

running. Correctness of the implementation requires that 

either the target conditions do not depend on user 

controlled variables, or the state of the user’s input device 
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does not change between the time the system carries out 

the temporal projection, and the time the target conditions 

are all achieved. 

One may reasonably ask under what conditions the 

synthesized automation will satisfy its specification. We 

address this issue informally as follows. To begin with, 

suppose that automaton A is generated by the 

implementation rules associated with a single instantiated 

specification scheme S. Then it is not hard to see that 

A S, as long as the code solving the reset equations, or 

the temporal projection equations, is guaranteed to find a 

solution. Now suppose that S=S1∧…∧Sn and that 

automaton A is constructed by separately applying the 

appropriate set of implementation rules to each Si and 

forming the union of the synthesized transition operators. 

Is it the case that A S ? The answer is “yes”, provided (1) 

each Si is an instance of either the EquationalReset

scheme or the ConditionalTermination scheme; (2) all the 

transition equations are linear and nonsingular (so their 

unique solutions are found reliably); (3) the entire 

specification is consistent. The EquationalReset and 

ConditionalTermination schemata require only that 

specified transitions fire under specified conditions. The 

synthesized automaton fails to meet its specification only 

if some operator fails to fire when its guard is true. This 

can happen only if some other operator with a different 

effect fires instead; however, if two synthesized operators 

with different effects are simultaneously enabled, then the 

specification is inconsistent.  So A S if S is consistent.  

Unfortunately, we have no such guarantee if S includes 

instances of the TemporalProjection scheme.  The 

TemporalProjection scheme asserts that specified 

transitions will occur, and that target conditions will hold 

at a subsequent time. The mere firing of the synthesized 

transitions does not guarantee satisfaction of the 

specification. One can easily construct an example 

S=S1∧S2 in which S1 is an instance of 

TemporalProjection and S2 specifies a transition operator 

that interferes with the implemented solution to the 

temporal projection problem. For example, in the dueling 

spaceships example, S2 might specify a transition operator 

that implements a collision between a torpedo and an 

asteroid and moves a launched torpedo off its projected 

course.  Furthermore, some other implementation of 

TemporalProjection might avoid or correct the 

interference. For example, the alternative implementation 

of S1 might include yet another transition that immediately 

puts the torpedo on a new course toward its target. In such 

a case, we cannot blame the developer by saying the 

specification is inconsistent. In order to guarantee 

correctness under these circumstances, the rules 

implementing TemporalProjection would have to 

examine and take into account the entire specification. 

This observation would seem to be at odds with the 

incremental, modular approach we have taken in 

developing parameterized specification schemata, and 

associating each with its own set of implementation rules.  

A developer would probably not intend for operators 

synthesized from two different schemata to be 

inconsistent or interfere with each other as described 

above. This suggests a practical solution. The system 

would separately synthesize an implementation of each 

instantiated specification scheme, and afterward attempt 

to verify consistency and absence of interference. For 

example, the system could check consistency by 

examining each pair of synthesized transition operators 

and trying to determine if the two guards can be 

simultaneously true, e.g., by linear programming for 

guards composed from linear inequalities, or cylindrical 

algebraic decomposition for guards containing 

polynomial inequalities. Absence of interference with 

temporal projection could be verified by doing a 

dependency analysis of the system derivative function to 

determine which state and mode variables influence the 

target conditions. If the relevant variables are modified 

only by transition operators implementing the temporal 

projection instance, then the implementation is free from 

interference. The verification process could result in three 

different answers: “correct”, “incorrect” and “unknown”. 

In the latter two cases, the appropriate remedial action 

would depend on the context in which the application 

program would be used.   

In practice, there are many reasons why the synthesized 

program might fail to meet expectations. The specification 

might include nonlinear equations. Numerical solution of 

these equations might fail to find a root when one exists, 

or might find the wrong root. This is often a possibility 

with the TemporalProjection scheme, since the projection 

equations are usually nonlinear.  Another problem is 

inherent in the nature of numerical simulation. A 

transition may be entirely missed if its guard is true for a 

period that is shorter than the step size used in searching 

for transition points. Two transition operators that are 

enabled at nearly the same time might be fired in the 

wrong order. Finally, a developer may write 

specifications that are inconsistent, e.g., two instances of 

the EquationalReset scheme with guards that can be 

simultaneously true, and reset equations that lead to 

different successor states.

6.  Results 

The specification and synthesis techniques have been 

implemented and used successfully to generate over a 

dozen different animation programs, each of which runs 

in our physics-based animation architecture and generates 
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a real-time animation of a physical scenario. These results 

include the examples discussed above (Ball on Steps,

Robot on Track, and Dueling Spaceships).  Some of the 

additional examples are described below, along with a 

description of the system features they demonstrate: 

Ball in Box: A ball bounces around the inside of a box. 

Several different versions of this example demonstrate use 

of the EquationalReset scheme to describe a variety of 

ways of modeling collisions between a rigid body and 

another object. 

Ball in Canal: A ball rolls without skidding around the 

inside of a closed track made from two cylindrical 

surfaces and two toroidal surfaces. The ball repeatedly 

breaks contact with one type surface as it makes contact 

with another. This example demonstrates use of mode-

dependent constraints, and use of the EquationalReset

scheme to describe discontinuous changes in velocity that 

occur when a mode is changed.  

Car on Road Network: A car drives and coasts on an 

interconnected set of roads with a variety of branching 

points, under user control. The car is constrained to 

remain on each road segment as it curves, rises, falls and 

banks in various directions.  This example also 

demonstrates use of mode-dependent constraints, and use 

of the EquationalReset scheme to describe discontinuous 

changes in velocity that occur when a mode is changed.

Traffic Control: Two cars drive around on separate 

circular tracks. The tracks are tangent to each other at one 

point. The cars must avoid colliding with each other. If a 

car reaches the border of the intersection region, and the 

other car is in the region, the first car slows to a stop at a 

specified point. It remains there until the other car leaves 

the region, and then proceeds through the intersection. 

This example demonstrates a single phase instance of the 

SpecifiedTermination scheme to describe the process of 

waiting for the intersection to be clear, and two separate 

single phase instances of the TemporalProjection scheme 

to describe the process of decelerating to stop at a 

specified point, and accelerating to a specified speed at a 

specified point. 

Car on Stunt Track: A car drives around a track with an 

up-ramp, an open space and a down-ramp. Upon reaching 

the up-ramp, the car accelerates up the ramp, flies through 

the open space, and lands precisely at the start of the 

down-ramp, after which it decelerates to its original 

speed. This example demonstrates use of a two-phase 

version of the TemporalProjection scheme to describe the 

acceleration and flying phases; and a one-phase version of 

the same scheme to describe the deceleration phase. 

Docking Spaceship: The motion of a spaceship is 

controlled by the direction and magnitude of the thrust 

generated by its engine. The spaceship undocks and 

accelerates away from a space station until reaching a 

specified exit point with a specified velocity. It then 

accelerates, coasts and decelerates along a curved path to 

reach the entry point of a second space station at a 

specified velocity. It then decelerates and docks with the 

second station at the instant its velocity reaches zero. This 

example demonstrates the use of two separate one-phase 

versions of the TemporalProjection scheme to describe 

the undocking and docking operations, and a three-phase 

version of the same scheme to describe the flight from the 

exit point of the first station to the entry point of the 

second station. 

7. Related Work 

Shift [Deshpande, et al. 1997] and Charon [Alur, et al. 

2000] are general languages for defining, compiling and 

simulating hybrid systems. The research underlying these 

systems is focused mainly on issues of hierarchical or 

compositional modeling, i.e., constructing hybrid systems 

from large numbers of fairly simple parts. These systems 

provide some specification tools similar to our 

EquationalReset scheme; however, they appear to provide 

little or no support for specifying the kinds of temporal 

relationships that can be expressed using our 

ConditionalTermination and TemporalProjection

schemata. Applications of Charon to computer animation 

are discussed in [Aaron, et al. 2001] and [Aaron, et al. 

2002]. This work uses Charon to model low-level and 

high-level navigation strategies for virtual agents 

operating in a two-dimensional world. It is based on a 

model of (2D) continuous dynamics that is different from 

the (3D) analytical dynamics model we used in our 

research. Its focus is verification, rather than synthesis. It 

presents results of experiments using a hybrid system 

model checker (HyTech, [Alur, et al. 1996]) to debug an 

animation program. 

Research on synthesis and verification of controllers for 

hybrid systems is surveyed in [Van Der Schaft and 

Schumacher, 2000] and [Labinaz, et al. 1997]. Much of 

this work deals with global safety properties of hybrid 

systems, i.e., assertions that certain undesirable behaviors 

can never occur [Asarin, et al. 2000], [Tomlin, et al. 

2000]. For example, a safety condition might assert that 

an undesirable region of the mode and state space cannot 

be reached from other, desirable regions. In contrast to 

this, our work focuses on synthesis of hybrid automata 

satisfying local properties, i.e., sequences of transitions 

that occur under specified mode, state and time 
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conditions. Furthermore, our specifications affirmatively 

describe the desirable behaviors the developer wishes will 

occur, such as achieving a target condition, rather than 

negatively proscribing behaviors he/she wishes will not 

occur. Finally, our work also deals with the problem of 

synthesizing an efficient program implementing the 

hybrid automaton. Most research on hybrid control 

synthesis tends to ignore issues of implementation.  

Logics of hybrid systems are discussed in  [Davoren and 

Nerode, 2000]. This work is based on a semantic model 

that is somewhat different from the one presented here. A 

satisfaction relation between formulae and hybrid 

automata is defined in a two step process: (1) A hybrid 

automaton is interpreted as labeled transition system 

(LTS); (2) The LTS is deemed to satisfy or not satisfy a 

formula according to semantic machinery used in 

temporal logics of discrete systems.  The resulting logics 

appear to be useful for describing global safety properties 

of hybrid systems; however, they do not appear to suit our 

purposes. The main problem is the absence of a “next” (χ)

operator. In our specifications, we need this operator to 

assert the occurrence of transition sequences under 

specified conditions.  The LTS-based semantics of   

[Davoren and Nerode, 2000] could probably be extended 

to define the “next” (χ) operator; however, for our 

purposes, it seemed simpler to define our own logic from 

scratch.

A number of other investigators have developed 

automated program synthesis techniques for numerical 

computation problems.  Some use program scheme 

instantiation and transformation techniques that are 

similar to the methods of our implementation rules; 

however, the applications are generally quite different. 

SciNapse uses a knowledge base of transformation rules 

implemented in Mathematica to generate programs that 

solve partial differential equations [Kant, 1993], [Akers et 

al., 1998].  Amphion uses deductive synthesis to generate 

programs utilizing libraries of astronomical software
[Lowry et al., 1994].  AutoBayes generates statistical data 

analysis programs from declarative descriptions of 

problem variables and probability distributions [Gray et 

al., 2003], [Fischer and Schumann, 2003]. It uses schema-

guided deductive synthesis, augmented by symbolic-

algebraic computation techniques. AutoFilter synthesizes 

programs for state estimation problems [Rosu and 

Whittle, 2002].  It generates programs by recursive 

instantiation of parameterized program-component 

schemata. AutoBayes and AutoFilter also construct proofs 

certifying key properties of synthesized programs 

[Schumann et al., 2003]. 

8. Future Work 

Many variations on our specification schemata can be 

imagined and probably implemented using synthesis 

techniques similar to the ones we have developed to date. 

One possible extension would develop a scheme for 

specifying optimal control strategies based on the 

Pontryagin maximum principle [Hartl, et al., 1995]. 

Another possible extension would define tools for parallel 

and sequential composition of specification schemata. 

Such tools would allow a developer to define a scheme 

instantiation once, and use it repeatedly in several 

different contexts. The developer would gradually 

construct more and more complex behaviors by 

combining simpler ones. Yet another extension would 

apply our methods to animation of articulated figures 

engaged in walking, running, jumping and similar actions. 

Systems of this sort have considerably more variables 

than the ones we have investigated to date. It would be 

worthwhile to investigate problems of scale that might 

arise in specifying and synthesizing programs that 

animate such complex articulated figures.   

9. Contributions 

The long-term goal of this research is to develop a 

specification language and synthesis system that is 

flexible enough to handle a wide variety of animation 

programs, yet restricted enough to permit programs to be 

synthesized automatically. We have defined a set of 

specification schemata that represent prototype fragments 

of the desired language. We have demonstrated that a 

number of interesting animation programs can be 

specified in terms of these schemata, and synthesized 

automatically using rewrite rules that instantiate program 

schemata.  Finally, we have suggested ways in which our 

specification language and synthesis system might be 

extended. For these reasons, we believe the research we 

have reported in this paper is a significant step toward our 

goal. 
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Appendix

Example Specifications:

EquationalReset[ (* Ball on Steps *) 

EventTimes -> {t1,t2}, 

Guard -> Mode[Ball][t1] == Bouncing  &&  Region[Ball][t1] == Step1 && 

AbsTrans[Contact][t1][[3]]<=AbsTrans[Point1][t1][[3]] && AbsLV[Ball][t1][[3]]<0.0 &&                                         

                   RelativeEnergy[Ball, Point1, t1] > EnergyThreshold, 

ResetEquations -> BouncingResetEquations[Step1, t1, t2]] 

SpecifiedTermination[ (* Robot on Track *)

InitialEventTimes -> {t1a,t1b}, FinalEventTimes -> {t2a,2b}, 

Guard -> Status[Robot][t1a] == Drive && Status[Clock][t1a] == Stopped, 

InitializationEquations -> Status[Robot][t1b] == Drive && Status[Clock][t1a] == Running && 

PositionContinuity[t1a,t1b]&&VelocityConstraintsInMode[t1b,{Status[Robot][t1b]->Drive}],                          

TerminationConditions -> VectorLength[AbsTrans[Robot][t2a] - AbsTrans[Ball][t2a]] <= RobotArmRange, 

   FinalizationEquations -> Status[Robot][t2b] == Swing && Status[Clock][t2b] == Stopped && 

PositionContinuity[t2a, t2b] && VelocityContinuity[t2a, t2b]] 

TemporalProjection[ (* Dueling Spaceships *)

   InitialEventTimes -> {t1a,t1b}, FinalEventTimes -> {t2a,2b}, 

Guard -> Status[Torpedo1][t1a] == Rest && InRange1[SpaceShip1, SpaceShip2, t1a], 

   UnknownValues -> {vX, vY, vZ}, SeedEquations -> {vX == 0.0, vY == 0.0, vZ == 0.0}, 

InitializationEquations -> Status[Torpedo1][t1b]==Launched&&Status[Torpedo2][t1b]==Status[Torpedo2][t1a] && 

Continuity[SpaceShip1,t1a,t1b] && Continuity[SpaceShip2,t1a,t1b] && 

Continuity[Torpedo2,t1a,t1b] && PositionContinuity[Torpedo1, t1a, t1b] && 

AbsLV[Torpedo1][t1b][[1]] == vX && AbsLV[Torpedo1][t1b][[2]] == vY && AbsLV[Torpedo1][t1b][[3]] == vZ, 

DurationCondition -> t1a + TorpedoTransitTime1 == t2a, 

TargetConditions -> PositionEquality[Torpedo1, SpaceShip2, t2a],

FinalizationEquations -> Status[Torpedo1][t2b] == Rest && Status[Torpedo2][t2b] == Status[Torpedo2][t2a] && 

Continuity[SpaceShip1,t2a,t2b] && Continuity[SpaceShip2,t2a,t2b] && Continuity[Torpedo2,t2a,t2b] && 

PositionEquality[Torpedo1, TorpedoDock1, t2b] && VelocityEquality[Torpedo1, TorpedoDock1, t2b]] 

Example Synthesis Rules:

TPInit[initTs_, finalTs_, unknowns_, seedEqns_, initEqns_, durCond_, targetConds_] ->

   Function[{pgmParms, ctlParms, mode, state, time}, 

      Let[{{seed, EqnSolution[seedEqns, unknowns]},

              {solution, NonLinearSolution[ 

                                   Function[{guess}, 

                                        Let[{{projectedState, ProjectedState[initTs, finalTs, unknowns, initEqns, durCond] 

                                                                                                     [pgmParms, ctlParms, mode, state, time, guess]}}, 

Residual[unknowns, finalTs, targetConds]

                                                             [pgmParms, ctlParms, guess, projectedState]]], 

                                   seed]}}, 

InitialState[initTs, unknowns, initEqns][pgmParms,ctlParms,mode,state,time,solution]]] 

ProjectedState[initTs_, finalTs_, unknowns_, initEqns_, durCond_] -> 

    Function[{pgmParms, ctlParms, mode, state, time, guess}, 

                    Let[{{initialState, InitialState[initTs,unknowns,initEqns][pgmParms,ctlParms,mode,state,time,guess]}, 

                             {duration, EqnSolution[durCond /. Second[initTs]->0.0, First[finalTs]]}}]

                          Integral[DerivativeFunction[pgmParms, ctlParms, mode], state, time, time + duration]] 
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