
An ML Editor Based on Proofs-as-Programs

Jon Whittle�

Recom Technologies
NASA Ames Research Center
CA 94035 Moffett Field, USA

jonathw@ptolemy.arc.nasa.gov

Alan Bundy
Richard Boulton

Division of Informatics
University of Edinburgh

Edinburgh EH1 1HN
bundy,rjb@dai.ed.ac.uk

Helen Lowey

Dept of Computer Studies
Glasgow Caledonian University

Glasgow G4 0BA
H.Lowe@gcal.ac.uk

Abstract

CYNTHIA is a novel editor for the functional pro-
gramming language ML in which each function definition
is represented as the proof of a simple specification. Users
of CYNTHIA edit programs by applying sequences of
high-level editing commands to existing programs. These
commands make changes to the proof representation from
which a new program is then extracted. The use of proofs
is a sound framework for analysing ML programs and giv-
ing useful feedback about errors. Amongst the proper-
ties analysed withinCYNTHIA at present is termina-
tion. CYNTHIA has been successfully used in the teach-
ing of ML in two courses at Napier University, Scotland.
CYNTHIA is a convincing, real-world application of the
proofs-as-programs idea.

1. Introduction

Current programming environments for novice func-
tional programming (FP) are inadequate. This paper de-
scribes ways of using mechanised theorem proving to im-
prove the situation, in the context of the language ML
[11], a strongly-typed FP language with type inference.
Datatypes in ML are defined by a number of constructors
which can be used to write patterns which define a func-
tion. The most common way to write ML programs is via a
text editor and compiler (such as the Standard ML of New
Jersey compiler). Such an approach is deficient in a number
of ways. Program errors, in particular type errors, are gener-
ally difficult to track down. Much conventional debugging
of runtime errors is replaced by dealing with compile time
error reports which, although one of the strengths of FP, can

�formerly University of Edinburgh
yFirst author supported by EPSRC studentship and 519-50-32 NASA

Code R Aero IT Base Program, SIPS, Program Synthesis. Third author
EPSRC grant GR/L14381. Other authors EPSRC grant GR/M45030

be frustrating for a new user and can form a barrier to learn-
ing FP concepts [16].

CYNTHIA is an editor for a subset of ML that pro-
vides improved support for novices. Programs are created
incrementally using a collection of correctness-preserving
editing commands. Users start with an existing program
which is adapted by using the commands. This means
fewer errors are made. In addition,CYNTHIA’s improved
error-feedback facilities enable errors to be corrected more
quickly. Specifically,CYNTHIA provides the following
correctness guarantees:

1. syntactic correctness;
2. static semantic correctness, including type cor-

rectness as well as checking for undeclared vari-
ables or functions, or duplicate variables in pat-
terns etc.;

3. well-definedness — all patterns are exhaustive
and have no redundant matches;

4. termination.
Note that, in contrast to the usual approach, correctness-
checking is done incrementally. Violations of (1), (3) and
(4) can never be introduced intoCYNTHIA programs. (2)
may be violated as in general it is impossible to transform
one program into another without passing through states
containing such errors. However, all such errors are high-
lighted to the user by colouring expressions in the program
text. The incremental nature ofCYNTHIA means that as
soon as an error is introduced, it is indicated to the user,
although the user need not change it immediately.

In CYNTHIA, each ML function definition is repre-
sented as a proof of a specification of that function, using
the idea of proofs-as-programs [6]. As editing commands
are applied, the proof is developed hand-in-hand with the
program, as shown in Figure 1. The user starts with an ex-
isting program and a corresponding initial proof (from an
initial library). The edits are actually applied to the proof,
giving a new partial proof which may contain gaps or in-
consistencies.CYNTHIA attempts to fill these gaps and



resolve inconsistencies. Any which cannot be resolved are
fed back to the user as program errors.

Proof

Initial

New Partial

Proof

ProofNew

Program

Initial

New Program

EDIT

EXTRACT

EXTRACT

RESOLVE

Figure 1. Editing Programs in CYNTHIA.

CYNTHIA’s proofs are written inOyster[3], a proof-
checker implementing a variant of Martin-L¨of Type The-
ory [9]. Oysterspecifications (or conjectures) may be writ-
ten to any level of detail, but to make the proof process
tractable in real-time,CYNTHIA specifications are re-
stricted severely. Specifications state precisely the type of
the function and various lemmas needed for termination
analysis (seex3.3). Proofs of such specifications provide
guarantees (1)-(4) above. Given this restriction, all theorem
proving can be done automatically.

The type systems ofOyster and ML are not quite the
same. In particular, in ML type-checking is decidable which
is not true ofOyster. However, it is possible to restrict to a
subset ofOyster’s types which resembles that of ML very
closely. We only consider a functional subset of the Core
ML language [16]. In addition, we exclude mutual recur-
sion and type inference. Mutual recursion could be added
by extending the termination checker. We made a conscious
decision to insist that the user provide type declarations.
This is because the system is primarily intended for novices
and investigations have shown that students find type in-
ference confusing. Given that edits are done incrementally
anyway, providing a type declaration is not too burdensome.
A possible future project is to extendCYNTHIA for ex-
pert users. This version would include type inference.

This paper concentrates on the underlying proof frame-
work of CYNTHIA. More details on the editing com-
mands can be found in [15] and details on empirical user
evaluations are in [14].

2. An Example of UsingCYNTHIA

Consider the task of writing a function,count, to count
the number of nodes in a binary tree.itree is defined by:

itree = leaf of int | node of int * itree * itree;

Suppose the user recognises that a function,length, to count
the number of items in an integer list, is similar to the de-
sired function. He1 can then uselengthas a starting point.
Below we give the definition oflengthpreceded by its type:

’a list -> int
fun length nil = 0
| length (x::xs) = 1 + (length xs);

Note that’a list is the polymorphic list type. We show
how lengthcould be edited intocount. The user may indi-
cate any occurrence oflengthand invoke theRENAME com-
mand to globally changelengthto count:

’a list -> int
fun count nil = 0
| count (x::xs) = 1 + (count xs);

We want to count nodes in a tree so we need to change the
type of the parameter. Suppose the user selects’a list
and invokesCHANGE TYPE to change the type toitree .
CYNTHIA propagates this change by changingnil to
leaf n and changing:: to node :

itree -> int
fun count (leaf n) = 0
| count (node(x,xs,ys)) = 1 + (count xs);

Note that the new patterns are well-defined. A new variable
ys of type itree has been introduced. It remains to alter
the results for each pattern.0 is easily changed to1 and
1 to 1 + (count ys) using CHANGE TERM. Note that
the recursive callcount ys was automatically validated as
termination-preserving in the application ofCHANGE TYPE.
It can therefore be selected from a drop-down menu. The
final program is:

itree -> int
fun count (leaf n) = 1
| count (node(x,xs,ys)) = 1 +

(count ys) + (count xs);

CYNTHIA has other commands too.MAKE PATTERN

replaces a variable by a number of patterns — one for each
constructor of the datatype. In this way, arbitrarily com-
plex patterns can be built-up and are guaranteed to be well-
defined. ADD RECURSIVE CALL allows the user to con-
struct functions with new recursion schemes.CYNTHIA
keeps (and displays) a list of so far valid recursive calls —
i.e. recursive calls which may be used in the program with-
out compromising termination. The user may add to this by
applyingADD RECURSIVE CALL. CYNTHIA then checks
that this new call maintains termination and if so, makes it
available during editing.

3. Representing ML Definitions as Proofs

This section presents the underlying proof engine in
CYNTHIA. Note that all the theorem proving is com-
pletely hidden from the user so that the user ofCYNTHIA
requires no specialised knowledge of logic or proof. We

1‘he’ will be used throughout to denote a male or female user.



will use an ongoing example to illustrate the ideas —qsort,
illustrated in Figure 2.2

(int * int -> bool) -> int -> int list
-> int list

fun split f k nil = nil
| split f k (h::t) = if f(h,k)

then h::split f k t
else split f k t;

int list -> int list
fun qsort nil = nil
| qsort (h::t) = (qsort (split (op <) h t))

@ [h] @ (qsort (split (op >=) h t));

Figure 2. A Version of Quicksort.

We exploit the proofs-as-programs idea to represent each
ML function definition as a proof inOyster. The key idea
with proofs-as-programs is that, in a constructive proof, the
expressiont : T can be read in three ways —t has type
T , t is a proof forT andt is a program for the task speci-
fied byT . This is what enables us to extract programs from
proofs. Proofs inOysterare carried out in a goal-oriented
way — the specification is the top-level goal. Applications
of inference rules produce zero or more sub-goals that are
themselves solved by further rule applications. Each infer-
ence rule has an associatedextract term. Gathering together
all inference rules gives an extract term for the entire proof.

3.1. Why Use Proofs?

Proofs seem to be a good framework for designing
correctness-checking editors. Another possible framework
is that of attribute grammars [1, 12], which attach anno-
tations to a language’s grammar so that properties can be
propagated throughout the abstract syntax tree. Proofs-as-
programs wins in two main ways. First, proofs-as-programs
gives a sounder theoretical underpinning. The correctness
of programs inCYNTHIA comes from the underlying
proof. The soundness of the proof rules is easy to check.
In contrast, however, it would be a massive, if not impos-
sible, undertaking to check the correctness of an attribute
grammar implementing aCYNTHIA-like editor. Second,
proofs-as-programs seems more suited for functional pro-
gramming. The proof structure localises the relevant parts
of the program — for instance, an induction rule encapsu-
lates the kind of recursion. This means that information is
localised rather than being spread across the grammar.

2:: is the ML cons operator for lists.@is append.

3.2. Specifications inCYNTHIA

In general, specifications may specify arbitrarily com-
plex behaviour about a function. However,CYNTHIA
specifications are deliberately rather weak. This is so that
the theorem proving task can be automated and so that pro-
grams with very different behaviours can be edited one into
another without requiring the user to carry out a compli-
cated editing of the specifications. EachCYNTHIA func-
tion specification states precisely the type of the function
along with lemmas required for termination analysis. The
specification forsplit in Figure 2 is:

P : (8z1 : (int � int! bool) � 8z2 : int � 8z3 : int list �

(f z1 z2 z3) : int list ^ (f z1 z2 z3) �w z3) (1)

wheref represents the name of the function.
There are three parts to this specification.P is a vari-

able representing the definition of the ML function (the ex-
tract term). P gets instantiated as the inference rules are
applied. The second part of the specification merely states
the existence of a function of the given type. Clearly, there
are an infinite number of proofs of such a specification.
The particular function represented in the proof is given
by the user, however, since each editing command appli-
cation corresponds to the application of a corresponding
inference rule. In addition, many possible proofs are out-
lawed because the proof rules (and corresponding editing
commands) have been designed in such a way as to restrict
to certain kinds of proofs, namely those that correspond to
ML definitions. The final part of the specification states
bounding lemmasthat hold for the function. In this case,
there is only one bounding lemma. Bounding lemmas are
part of Walther Recursion analysis [10]. They express up-
per bounds on a function,f , based on a fixed size ordering,
w. These upper bounds are useful because they enable us
to reason about the measure of a recursive call involvingf .
In this case,w is the length of a list, so this lemma states
that the length of the result ofsplit is never greater than the
length of its third argument.

CYNTHIA comes with an initial library of functions
and corresponding proofs. The idea is that the user always
begins with an existing definition from this library but is
free to add any function created usingCYNTHIA.

The specifications are, in fact, dynamic, in the sense that
the type may change, or bounding lemmas may be added
or removed. A change of type is made in direct response
to the application of theCHANGE TYPEcommand. Bound-
ing lemmas are added (removed) automatically depending
on which edits are applied. Fortunately, it turns out that the
only command which can affect the validity of the current
bounding lemmas isCHANGE TERM so bounding lemma
revision (which involves a fresh analysis of the entire func-
tion) is only required then.



WREFL
H ` x �w x

WCONS1
H ` ui �w t

H; (f : : : xi : : : ) �w xi ` (f : : : ui : : : ) �w t

WRED
H ` ui �w t

H; (f : : : c(: : : ; xi; : : : ) : : : ) �w xi ` (f : : : c(: : : ; ui; : : : ) : : : ) �w t

WCONS2
(8i 2 Rc) H ` ui �w ti

(8i 2 f1; : : : ; ng) ` i 62 Rc ! (ui = ti)
H ` c(u1; : : : ; un) �w c(t1; : : : ; tn)

WCONS3
H ` u �w ti

` i 2 Rc

H ` u �w c(: : : ; ti; : : : )
WSUBST H ` (u �w t) � fx2=x1g

H;Y : x1 = x2 ` u �w t

Figure 3. Rules for Walther Recursion.

3.3. Bounding Lemmas

One of the main correctness guarantees provided by
CYNTHIA is termination. Termination is in general un-
decidable. One approach would be to provide the user
with a pre-defined set of well-founded induction schemes.
To use a scheme not specified in this set, the user would
then specify an ordering and prove that this ordering is
well-founded. SinceCYNTHIA is meant for program-
mers, not logicians, the user cannot be expected to carry
out such tasks. The difficulty in designingCYNTHIA
then is to find a decidable subset of terminating programs
that is large enough to include most definitions a (novice)
ML programmer might want to create.CYNTHIA is
restricted to such a set, the Walther Recursive functions
[10], which includes primitive recursive functions over an
inductively-defineddatatype, nested recursive functions and
some functions with previously defined functions in a re-
cursive call, such asqsort. Walther Recursion assumes a
fixed size ordering, with a semantics defined by the rules
in Figure 3. Intuitively, this ordering is defined as follows:
w(c(u1; : : : ; un)) = 1 +

P
i2Rc

w(ui) wherec is a con-
structor andRc is the set of recursive arguments ofc. In the
case of lists, this measure is length. Ifc(u1; : : : ; un) has
typeT then therecursivearguments ofc are thei such that
ui has typeT . Other arguments arenon-recursive.

There are two parts to Walther Recursion — bound-
ing lemma analysis (BLA) and measure argument analysis
(MAA). BLA calculates bounding lemmas. MAA checks
that each recursive call is measure decreasing. Each time a
new definition is made, bounding lemmas are calculated for
the definition. These place a bound on the definition based
on the fixed size ordering. To guarantee termination, it is

necessary to consider each recursive call of a definition and
show that the recursive arguments decrease with respect to
this ordering. Since recursive arguments may in general in-
volve references to other functions, a measure decrease is
guaranteed by utilising previously derived bounding lem-
mas. There are two kinds of bounding lemmas — reducer
and conserver lemmas. Conserver lemmas are of the form
f x1 : : : xn �w xi for somei. Reducer lemmas are the
same but the inequality is strict.u �w t iff u andt are well
typed, inhabit the same type and the measure ofu, w(u), is
no larger thanw(t). Strict inequality is defined similarly.

The functionsplit satisfies the conserver lemma:

split f k z �w z

This can be proved automatically inCYNTHIA using the
rules given in Figure 3 and induction. In Figure 3,f is an
arbitrary function, whereasc is a constructor function.

3.4. Proofs inCYNTHIA

Oyster’s inference rules are somewhat low-level. This
makes it awkward to develop the proof and program to-
gether because the two entities are at different levels of ab-
straction. In addition, there is some ambiguity in the corre-
spondence when considering real ML programs. The same
ML construct could be implemented in the proof by a vari-
ety of different combinations of inference rules. In order to
obtain a cohesion between proof and program, derived rules
and tactics were added toOysterwhich both raise the level
of discourse within the proof and also make design choices
which resolve ambiguities.

We present (part of) the proof forsplit. We introduce the
derived rules as they are needed. The choice of which rule to



1. Find measure arguments,M , for f by considering eachxi in turn and applying
the rules in Figure 3;

2. if M = fg, termination analysis fails.
else foreach recursive call,f u1 : : : un, try to find anm 2M such that
um <w xm — i.e. if xm is a constructor termc(: : : ; rj ; : : : ), we need
um �w rj for somej.
if this can be done for all recursive calls, thenf terminates.
elsetermination analysis fails

Figure 4. Procedure for Checking Termination.

apply is taken by the user, although indirectly, by choosing
which editing command to apply. Each editing command
corresponds to applying (or modifying) a set of inference
rules. For example, theMAKE PATTERN command modifies
an induction rule.

The first step in the proof ofsplit is to apply the I-8 rule
(a standardOysterrule) backwards to the specification (1).
After three applications of this rule, the goal looks like:

z1 : (int � int ! bool); z2 : int; z3 : int list `

P1 : ((f z1 z2 z3) : int list ^ (f z1 z2 z3) �w z3)

whereP has been instantiated to�z1 � �z2 � �z3 � P1.
The pattern matching insplit would have been intro-

duced by applyingMAKE PATTERN to the third argument.
In proof terms, this corresponds to an induction overz3.
In CYNTHIA, induction rules are dynamically created as
they are needed. This process is driven by the user via the
application of theMAKE PATTERN and ADD RECURSIVE

CALL commands. Each ML datatype definition gives rise to
a well-founded “primitive” induction rule which is added to
CYNTHIAwhen the datatype is defined. This only allows
proofs based on this primitive induction rule. Non-primitive
inductions can be added usingMAKE PATTERN. Recall that
MAKE PATTERN splits a variable into cases, one for each
constructor of the datatype. Internally,MAKE PATTERN has
a similar effect on the current induction rule in a proof. For
example, ifMAKE PATTERN is used to convert patternsnil

andh::t into nil , h::nil andh::h1::t , then the cor-
responding induction rule will now have three antecedents
— two base cases and one step case. Termination of this
new induction rule is guaranteed because the induction hy-
potheses (corresponding to recursive calls in the program)
are over a strict subterm of the induction term (pattern over
which the function is defined).

More interesting recursive calls, not necessarily based
on the structure of the defining patterns, are introduced by
ADD RECURSIVE CALL. The effect on the induction rule
is to add an induction hypothesis corresponding to the new
recursive call. Since arbitrary recursive calls can be input
by the user, there is no guarantee that the resulting induc-
tion rule is well-founded. This is where the second part of

Walther Recursion (measure argument analysis) comes in.
We digress from the proof ofsplit to describe measure ar-
gument analysis.

3.5. Measure Argument Analysis

Definition 1 Given a functionf , defined over arguments
x1; : : : ; xn, the set of measure arguments is the set ofi such
that for every recursive callf u1 : : : un of f , ui �w xi.

MAA involves showing that the measure decreases over
each recursive call. To check for termination, the procedure
in Figure 4 is adopted.

For our quicksort example, Figure 2, there are two ap-
plications ofADD RECURSIVE CALL each introducing a re-
cursive call. In attempting to deriveum <w xm, it is nec-
essary to use previously defined bounding lemmas. In this
exampleM = f1g, sincesplit(op <) h t �w t and
split (op >=) h t �w t. Sincet �w h :: t, termination is
proved. These additional proof obligations are factored into
the induction rule. Hence, in the general case, the induction
rule also captures the proof obligations for measure argu-
ment analysis. The induction rule is well-founded as long
as these obligations can be proved.

In [10], Walther Recursion was described for a small
functional language with a syntax and semantics different
to that of ML. We made extensions to encompass the subset
of ML supported byCYNTHIA. The major changes are
as follows: in the language in [10] definitions are made us-
ing destructors. It is more natural to use constructors in ML.
Therefore, the rules were recast in constructor-fashion; [10]
suggests a forward application of the rules.CYNTHIA
is based on a backwards style so our system sets up sub-
goals for each possible lemma and then applies the rules in
a backwards fashion; a function defined by an exhaustive
pattern cannot be a reducer because the measure of the base
case argument cannot be reduced. [10] forces the user to
make an additional definition, restricted to non-base-cases.
It is naive to expect programmers to go through this pro-
cess of making additional definitions. Our solution is to
automatically place side-conditions on reducer lemmas that
rule out base cases. This allows the user to write definitions



as normal; [10] does not include MLcase expressions or
local function declarations. It does allow local variable dec-
larations but only of the formdec = exp wheredec is a
variable. InCYNTHIA, dec may be a pattern.

We now return to our proof ofsplit. By applying the
primitive list induction rule for lists,P1 is instantiated to:

ind(z3; ab; �h � �t � as)

whereind is a function returning its second argument if
z3 is an empty list and its third argument otherwise. The
induction rule gives rise to two subgoals. Consider the base
case first:

: : : ` ab : ((f z1 z2 nil) : int list ^ (f z1 z2 nil) �w nil)

The base case continues by applying theWITNESS rule
which instantiatesab to nil. The role ofWITNESS is to
provide explicit instantiations of extract terms. This instan-
tiation is given by the user using the commandCHANGE

TERM. TheWITNESSrule is defined as follows:

H ` e : T0
H ` e 2 �
H ` A � fe=(f x1 : : : xn)g
H ` e : ((f x1 : : : xn) : T0 ^ A)

WITNESS

where� is the set of static semantically valid expressions.
WITNESSis a derived rule added toOysterto raise the level
of the proof. The application ofWITNESSinstantiatesewith
nil giving three subgoals:
: : : ` nil : int list : : : ` nil 2 � : : : ` nil �w nil

The first two subgoals are proved easily using tactics for
type-checking and semantics-checking respectively. The
third is proved usingWREFL.

The step case subgoal is as follows:

: : : ; h : int; t : int list;

(f z1 z2 t) : int list; X1 : (f z1 z2 t) �w t

` as : ((f z1 z2 (h :: t)) : int list ^

(f z1 z2 (h :: t)) �w (h :: t))

The definition of split includes a conditional statement.
The corresponding proof notion is captured by another of
CYNTHIA’s derived rules,IF:

H ` e1 : bool
H;C : e1 ` e2 : A

H;C : :e1 ` e3 : A
H ` e1 2 �

H ` (if e1 then e2 else e3) : A
IF

The user provides the condition over which the
casesplit is made with the commandADD CON-
STRUCT(IF THEN ELSE). This instantiatesas to

if z1(h; z2) then E2 else E3 and gives four sub-
goals. Type-checking and semantics-checking are done
easily. The other two subgoals correspond to each branch
of the conditional split. Let us consider the first branch
only. The subgoal in this branch is:

: : : ; C : z1(h; z2); (f z1 z2 t) : int list;

X1 : (f z1 z2 t) �w t

` E2 : ((f z1 z2 (h :: t)) : int list ^

(f z1 z2 (h :: t)) �w (h :: t))

Now we apply WITNESS, instantiatingE2 to h ::
(f z1 z2 t). Again, type-checking and semantics-checking
are dealt with easily. The remaining subgoal is:

: : : ; C : z1(h; z2); (f z1 z2 t) : int list;

X1 : (f z1 z2 t) �w t

` (h :: (f z1 z2 t)) : int list ^

(h :: (f z1 z2 t)) �w (h :: t)

There are two conjuncts to prove. The first is trivial. The
second needs to be proved using the rules for Walther Re-
cursion and an induction hypothesis. First, applyWCONS2.
This gives the subgoal:

: : : ` (f z1 z2 t) �w t

which is proved by the induction hypothesis,X1.
The second branch of the conditional statement can be

proved similarly. Collecting together all the instantiations,
P has been instantiated to:

�z1 � �z2 � �z3 � ind(z3; nil; �h � �t�

if z1(h; z2)

then h :: (f z1 z2 t)

else (f z1 z2 t))

A simple translation, along with a mechanism for keeping
track of variable names, gives the programsplit.

3.6. Replaying Proofs According to User Edits

The previous section gave the complete proof represen-
tation for split. The user develops the structural parts of
such proofs using the editing commands.CYNTHIA au-
tomatically carries out the correctness checking parts of the
proof which includes some search. The user never has to
develop an entire program (proof) from scratch since a li-
brary component is chosen as the starting point. As editing
commands are applied to this starting definition, the proof is
updated and maintained (e.g., some bounding lemmas may
need to be revised).

Definition 2 The Abstract Rule Tree (ART) of a proof is the
tree of rule applications, where the hypotheses list, goal etc.
have been omitted.



The procedure for editing the proof is as follows. The
user highlights the position in the program where he wishes
to make a change.CYNTHIA calculates the correspond-
ing position,pos, in the proof tree. Let the synthesis proof
be denoted byPt and the proof subtree belowpos by Ps.
CYNTHIA abstractsPs into an ARTAs. CYNTHIA
then makes changes toAs to give�(As). �(As) is then un-
abstracted or replayed to give the new proof subtree�(Ps).
The complete new proof tree is thenPt with Ps replaced by
�(Ps). Note thatCYNTHIA abstracts onlyPs and not the
whole proof treePt. This saves effort because, due to the
refinement nature of the proofs, any rules not inPs will be
unaffected.

The replay of the ART is the main method for propagat-
ing changes throughout the proof. In addition, some com-
mands also require a change to the specification. For ex-
ample,ADD CURRIED ARGUMENT adds an additional type
to the specification. The ART captures the dependencies
between remote parts of the program and the replay of the
ART updates these dependencies in a neat and flexible way.
Changes to the program will mean that some of the previ-
ous subproofs no longer hold. In some cases, the system can
produce a new proof. However, it may be that a subgoal is
no longer true. Such subgoals correspond directly to errors
in the program. The replay of the ART is a powerful mech-
anism for identifying program errors and highlighting them
to the user. During the replay, if a rule no longer holds, a gap
will be left in the proof. This corresponds to a position in
the ML program and so the program fragment correspond-
ing to where the proof failed can be highlighted to the user.
This failed proof rule usually denotes a type error or other
kind of semantic error (e.g. unbound variable). The replay
of the ART and the resolution of inconsistencies is given by
the RESOLVE step in Figure 1.

Various optimizations have been implemented to im-
prove the efficiency of the ART replay. Correctness-
checking rules can be time-consuming and soCYNTHIA
selectively replays these rules.CYNTHIA automatically
decides which correctness-checking rules need to be re-
played according to which editing command was applied.

4. EvaluatingCYNTHIA

CYNTHIA has been successfully evaluated in two tri-
als at Napier University. The first trial involved a group of
40 postgraduates learning ML as part of a course in Formal
Methods. The second trial involved 29 Computer Science
undergraduates. Full results of these trials can be found in
[16]. Although some semi-formal experiments were under-
taken, most analysis was done informally.

It is important to note thatCYNTHIA is generally
fairly easy to use. The user requires no knowledge of the
underlying proof framework to edit programs — the inter-

face is similar to a structure editor (see Figure 5) in which
all the proof rules are completely hidden.

Figure 5. GUI for CYNTHIA

The evaluations suggested the following trends:
� Students make fewer errors when using
CYNTHIA than when using a traditional
text editor.

� When errors are made, users ofCYNTHIA lo-
cate and correct the errors more quickly. This es-
pecially applies to type errors.

� CYNTHIA discourages aimless hacking. The
restrictions imposed by the editing commands
mean that students are less likely, after compila-
tion errors, to blindly change parts of their code.

� CYNTHIA encourages a certain style of pro-
gramming. This style is generally considered to
be a good starting point for learning functional
programming. The editing commands correspond
to FP concepts and hence discourage, for exam-
ple, attempts to program procedurally.

5. Related Work

The idea forCYNTHIA grew out of work on there-
cursion editor[2], an editor for Prolog that only allows ter-
minating definitions. The recursion editor was severely re-
stricted, however, to a much smaller class of terminating
programs. It also hadCYNTHIA-like transformations but
these were stored as complex rewrite rules, the correctness
of which had to be checked laboriously by hand. The use
of a proof to check correctness eliminates the possibility of



error in such soundness-checking.

Attribute grammars were mentioned inx3.1 as an alter-
native framework for designing editors. No ML editors
have been produced using attribute grammars. A couple
of other ML editors have recently become available, how-
ever. MLWorks [5] and CtCaml [13] have different objec-
tives thanCYNTHIA. MLWorks is an integrated envi-
ronment for ML with no structure-editing facilities or ad-
vanced correctness-checking. CtCaml is a structure editor
for another dialect of ML. Its structure editing is primitive,
however, in contrast toCYNTHIA’s specially designed
commands. CYNTHIA offers incremental correctness-
checking whereas MLWorks users must compile their pro-
grams to receive feedback.

Two proof environments are worth mentioning. ALF [8]
has a similar design toCYNTHIA. Proofs are derived by
structure editing whilst maintaining termination and pattern
exhaustivity. ALF is meant to be a proof environment rather
than a programming environment, however. So the goals
of CYNTHIA and ALF are somewhat different. The fact
thatCYNTHIA was to be used by novices meant that any
proof details must be hidden. This is not the case with ALF.
Extended ML [7] is a framework for the formal develop-
ment of correct programs in the Standard ML language. It
is a simple extension of Standard ML in which, in addition
to code, the user may also express properties of this code
in a logic which is a superset of Standard ML. The use of
Extended ML requires knowledge of formal specification
techniques because the proof is not hidden from the user.

6. Conclusions

This paper has presentedCYNTHIA, a novel environ-
ment for writing ML programs, primarily aimed at novices.
The user writes ML programs by applying correctness-
preserving editing commands to existing programs. Each
ML definition is represented as the proof of a simple spec-
ification which guarantees various aspects of correctness,
including termination. The use of an underlying proof pro-
vides a sound framework in which to analyse and provide
feedback on users’ programs. The proof checking is fully
automatic and hidden from the user.CYNTHIA has been
successfully tested on novice ML students.

CYNTHIA provides a framework for carrying out
more sophisticated analysis than is done at present. This
could be done by expressing additional properties in the
specification of the proof. Clearly, the proof of such speci-
fications could be arbitrarily hard, but the proofs could still
be done automatically if only certain properties or restric-
tions were considered and proof strategies for these were
implemented.

References

[1] H. Alblas and B. Melichar. Attribute grammars, applications
and systems. InInternational Summer School, Prague, June
1991. Springer-Verlag. LNCS v. 545.

[2] A. Bundy, G. Grosse, and P. Brna. A recursive techniques
editor for Prolog.Instructional Science, 20:135–172, 1991.

[3] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The
Oyster-Clam system. In M. E. Stickel, editor,10th CADE,
pages 647–648. Springer-Verlag, 1990. LNAI 449.

[4] L. Damas and R. Milner. Principal type schemes for func-
tional programs. In9th ACM Symposium on Principles of
Programming Languages, 1982.

[5] MLWorks. Harlequin, Inc., 1996.
[6] W. A. Howard. The formulae-as-types notion of construc-

tion. In J. P. Seldin and J. R. Hindley, editors,To H. B.
Curry; Essays on Combinatory Logic, Lambda Calculus and
Formalism, pages 479–490. Academic Press, 1980.

[7] S. Kahrs, D. Sannella, and A. Tarlecki. The definition of
Extended ML: a gentle introduction.Theoretical Computer
Science, 173:445–484, 1997.

[8] L. Magnusson and B. Nordstr¨om. The ALF proof editor and
its proof engine. In H. Barendregt and T. Nipkow, editors,
Types for Proofs and Programs, pages 213–237. Springer
Verlag, 1994. LNCS 806.

[9] Per Martin-Löf. Constructive mathematics and computer
programming. In6th International Congress for Logic,
Methodology and Philosophy of Science, pages 153–175,
Hanover, August 1979. Published by North Holland, 1982.

[10] David McAllester and Kostas Arkoudas. Walther recursion.
In M. A. McRobbie and J. K. Slaney, editors,13th CADE,
pages 643–657. Springer Verlag LNAI 1104, July 1996.

[11] R. Milner, M. Tofte, and R. Harper.The Definition of Stan-
dard ML. MIT Press, 1990.

[12] T. W. Reps and T. Teitelbaum.The Synthesizer Generator: A
System for Constructing Language-Based Editors. Springer-
Verlag, New York, 1989.

[13] L. Rideau and L. Th´ery. An interactive programming en-
vironment for ML. Rapport de Recherche 3139, INRIA
Sophia Antipolis, March 1997.

[14] J. Whittle. Improving functional programming environ-
ments. In INTERACT-99, IFIP Conference on Human-
Computer Interaction, 1999.

[15] J. Whittle, A. Bundy, and H. Lowe. An editor for helping
novices to learn Standard ML. InProceedings of the Ninth
International Symposium on Programming Languages, Im-
plementations, Logics and Programs, pages 389–405, 1997.

[16] J. Whittle. The Use of Proofs-as-Programs to Build an
Analogy-Based Functional Program Editor. PhD thesis, Di-
vision of Informatics, University of Edinburgh, 1999.


