Towards an Epistemology for Software
Representations

Christopher A. Welty

Computer Science Dept.
Vassar College
Poughkeepsie, NY 12601
weltyc@cs.vassar.edu

Abstract 2 First Order Representations

The KBSE community is actively engaged in finding ways
to represent software and the activities that relate to variou%r

stages in its lifecycle. While the wealth of modeling activitie] X .
have, necessarily, been founded on first order logic base% Is:predicate symbolandobject symbol¢Carnap, 1961].

. . . bject symbols denote instances or individuals, and predi-
representations, this paper reports on research into Software .) L

: . cate symbols denote properties or attributes of those individ-

Information Systems that has found the domain of softwarL(jeals

knowledge to be inherently second order. A facility for accu- Although actual usage varies, the logical foundation is

rately _representmg secono_l qrder constructs such- as Alear:set membership is a unary predicaaed therefore the
found in the software domain is also presented.

Keywords Knowledge Representation, Domain Model-"2M¢ of a set 'S a predicate sympol [Car_nap, 1947] [Quine,
. . . 1964]. This point may seem obvious or irrelevant, but the
ing, Program Understanding, Software Information Systems.. . " . . X

simple fact is that many practitioners ignore it, and it does

come into play in the realm of software representations.

Most symbolic representation systems are based on First
der Logic (FOL), and thus have two basic kinds of sym-

1 Introduction
2.1 Classes, Instances, and Links

The fields of Knowledge Representation, Domain Mod- o) o
eling, and KBSE deal primarily with representation systems A common representation in FOL is something like the
that are first order. Often the users of these systems take f@Hlowing:
granted the fact that their representations are limited to first
order, and forget that the world is full of knowledge requir-ﬁi?r:ifr(ll)o)
ing higher order reasoning. e(E1,10)

This paper begins with a brief but motivated review otAg '

the nature of first order representations, and a few second 14se accustomed to reading representations will inter-

order extensiqns that exist in certain representatipn SysteMset this as, 1 is anEagle, 10 is aNumber, andEL's ageis

A representation problem that arose when studying ways iy s is not actually what it says according to the seman-
make Software Information Systems more effective is thefjcs of FOL, but because most representations follow this
presented, and a case is made that the source of the problgghe s scheme, implemented representation systems (such
is the need for second order reasoning. Finally, a facility fobs are provided by object-oriented languages or frame-based
supporting limited second order reasoning is described. languages) present scaled down first order systems which

The main goal of this paper is not to propose a new reprey o,y for the definition of three special kinds of symbols:
sentation system, but to make the point that software réprerassesinstancesandlinks.

sentations are inherently second order, and that regardless of 5, instance is similar to an object symbol in FOL except

the approach taken, this fact should be considered to iNSUfga+ it must be the member of some class. as Eitand10.
the accuracy of a representation. '

A class is a special unary predicate that denotes a set, as withmpletely first order because, as stated in the beginning of
EagleandNumber. A link is a binary predicate that representsthis sectionset membership is a unary predicallis exam-

a relationship between two instances, as aiila The inter- ple violates the semantics of a first order system [Carnap,
pretation given above would be correct for a system witli947] [Quine, 1964].

these constructs. The point here is that, despite syntactic hacks like mak-
ing a predicate calleidstance an instance of an instance is a
2.2 Superclass Inheritance second-order construct.

Another common representation in FOL is: 2.3.2 Links between Classe§irst order representation

languages also do not allow links between classes. A link is a
two place predicate, and a class is a one place predicate,

This would be interpreted as “All eagles are birds,” whichma‘king thepreysOnlink second order:

again is not entirely correct according to the semantics cgi
. . . geon(P1)

FOL, but is used so frequently to mean precisely this thaéagle(El)
representation languages almost universally supply a shor,j,—reyson(Eame’ Pigeon)
hand notation for expressing this taxonomic relationshippreyson(Eagle, P1)
calledsubclass

Although the subclass relationship is usually expressed A class can not, therefore, be predicated by a link. It is
as a relationship between two classesfagieis a subclass common to speak of the relationship between an instance
of Bird, it is worthwhile to note that, by definition, relation- and its class as a link, but this must be understood to be dif-
ships between predicate symbols (classes are, as discuss@e@nt than a link between two instances.
above, predicate symbols) esecond orderand it is impor-
tant computationally to maintain the first order status of .4 Extensions to First Order Systems
representation system [G6del, 1931]. The subclass relation-
ship really is no more than a shorthand notation for the infer- Second order systems are generally avoided because they
ence shown above, with a slightly different interpretation. are undecidable. Many representation systems, however,

Clearly, viamodus ponenshe result of makingaglea Provide small extensions that, while second order, are tightly
subclass oBird would be that the instan& in the previous ~controlled to avoid undecidability.
example would now be inferred to be an instancBief.

[/ Eagle(x) — Bird(x)

This is known asuperclass inheritance 2.4.1 Smalltalk Meta-ClassesSmalltalk [Goldberg and
Robson, 1983] provides the ability for classes to have certain
2.3 ldentifying Non-First Order Objects properties of instances. They can, like instances, be sent

messages and have their own variables, which are defined as
The previous section mentioned the importance of mainpart of themeta-classlescription of the class. While this is
taining a first order representation in a system. There are tW@cond order, this aspect of the representation is not subject
common pitfalls of representing a domain that can causetg inference, (Smalltalk provides only for superclass inherit-
second order construct. ance) and undecidability is not a problem..
Smalltalk classes are also themselves instances of a spe-
2.3.1 Instances of Instanceddost representation lan- cial class namediass making them instances which can
guages do not permit an instance to have instances. Consideive instances. Again, this second order relationship is con-

the implications of such a construct in FOL: trolled because there is no actual inference involved, it is
provided more to keep the syntax cleaner, and make the mes-
Eilglzez()El) sage passing paradigm pervasive in the language.

WhenE1 is used as a predicate symbol. the predicate 2.4.2 Classic Meta-IndividualsClassic [Brachman, et
P y ' P |., 1991], a modern descendent of KL-ONE [Brachman and

Eagle becomes second-order because it is the predicate of g, L
. : L . chmolze, 1985], employs an approach to representing links
predicate. A common pitfall of modeling in FOL is to create : . .
on classes that has been calleddhstraction relationship

a two-place predicate for instance, such as: [Brachman, 1983].

instance(E1, Eagle) Th|§ ap_proacr_] involves creating, as part_ of the language,
instance(E2, E1) a special kind qf msta_nce for egch class which reprt_amz_nts
class as an objecWhile these instances (calleteta-indi-

Which, Syntactica”y’ is first order. It is not, however, VidU&'Q behave like all other instances (having links and

being instances of a concept caltedcep), they have a spe- of what the software “knows” about the objects in the
cial relationship, the abstraction relationship, between thendomainin a form which can be accessed by a maintainer
selves and the class they represent. Each class in Classic, This latter point is critical in distinguishing domain-ori-
then, can have instances and a meta-individual. ented techniques from the more generic software representa-
Again, as with Smalltalk, this second order relationshigions common to KBSE: while all software inaccessibly
does not introduce undecidability because it is not used iimcludes domain knowledge, a domain-oriented system treats

any inference. the domain knowledge as distinct, and provides mechanisms
for understanding it. Many KBSE systems take for granted
3 Representing Software the fact that a user will be a domain expert, but experience

has shown this is frequently not the case [Curtis, Iscoe, and
Krasner, 1988]. Providing the capability to understand the

This work is the result of studyirgoftware Information T .)
SystemgDevanbu, Selfridge, and Brachman, 1990] in orderdomaln, is thus an important practical goal [Devanbu, Self

to determine how to make them more effective [Welty,”dge’ and Brachman, 1990]
1995]. A Software Information System (SIS) is a knowledge, ,, Objects in the Software Domain
based system which serves to make software maintenance
less time-consuming by providing faster and more intelligent The software domain contains objects like functions,
access to the software. data-types, and variables. It also contains assignment state-
An SIS contains two representational parts: a code modghents, for and while loops, if statements, parameters, etc.
and a domain model [Selfridge, 1990]. The former repreéTnese are all the constructs defined by the programming lan-
sents objects in the code (the software domain), which facilyyage in which the software to be represented is written, and
tates access to these objects, and the latter represents obqugg, are some of the classes in an ontology for code-level
in the application domain, which facilitates understandingnowledge. Part of a possible class hierarchy for this domain
that domain. is shown in Figure 2.

3.1 Objects in the Application Domain ,
code-thing

Knowledge of the application domain has long been rec-
ognized as a critical part of software maintenance [Curtis, code-definition code-statement
Iscoe, and Krasner, 1988]. Representing some of this knowl-
edge in a domain model is a fairly common practice, to assist 4aple

. . . . function while return
in understanding during any phase of the software lifecycle
[Iscoe, 1991]. data o assignment

Modeling a domain requires building an ontology for that P function-call

domain, the specifics of which are dependant on the repre- parameter
sentation system being used. Typical elements of a domainF
ontology are classes, a class hierarchy, links, and rules which

canpinfer thesle “Tks bﬁFweenhln?tanCShs. lication d . Instances of these classes would be lines of code, vari-
N example class hierarchy from the application domaii,y o anq the aggregation of variables and lines of code into

of gmall distribution is shown n Flgu.re L. An instance Offunctions, etc. For example, consider the following function
mail-messagavould be an electronic mail messadgen some in C:

instance ofmnail-senderto some instance afail-recipient,
wherefrom andto are links.

IGURE 2. A taxonomy of code-level concepts.

void deliver_message_to_group (message,group)
o MAIL_MESSAGE message;
email-thing GROUP group;
{LIST members;
mail-message mail-sender mail-recipient
members = get_members(group);
while (! empty(members)) {

person group deliver_message_to_person(message,
first(members));
FIGURE 1. A simple domain hierarchy. members = butfirst(members);

}

The goal of a domain model in SISs, and in softwaré
engineering in general, is to provide an accurate description

new-value argument
funcion-01 stant funcion-calk 01 . detartype-06
has—qata—type group
parameter-02
assignment-03 data-type-07 group
| List
next has-data-type
changes l
local-variable-05
whie-01 ﬁ members
‘ argument
when false test
function-calH02 argument argument
function-callo4
reum-04 function-calko5
while-true
parameter-O1 changes oy value
message
I .
has-data-type assignment-04
argument
datatype-09
malHmessage
fundi 3 next

FIGURE 3. A semantic network view of a C function.

This entire function can beompletelydescribed as 3.3 Integrating the Code and Domain Models

instances of the classes in Figure 2, since each of the C-le

guage statements has a very rigid form that can be repr The LaSSIE SIS kept the code and domain models sepa-
sented as links. For example, an assignment statemerate, and this led to two problems:

always has a variable which is changed (the left-hand side
the “="), and a new value which is either another variable o
a function of another variable or variables (the right-hanc
side). An assignment statement, then, has two links: or
which relates it to the variable to be changed, and one th

relates it to another variable or to a function call. A semanti. When a maintainer has engaged in understanding a par-

There is implicit domain knowledge in the code model,
and there is no way to verify that this knowledge is the
same as what is explicitly represented in the domain
model.

network view of the C function above represented in this ticular domain Object through the domain model, the
way is shown in Figure 3, this is very similar toastract maintainer can not then move to the parts in the code
syntax tree model where that object is implemented.

Providing this level of representation for a program
allows for significant benefits to maintainers engaged it For example, the objectsail-messageandgroup appear

understanding the program. For examp|e, rules and oth‘both in the domain hierarchy shown in Figure 1 and the func-
forms of inference have been employed to automaticalltion representation shown in Figure 3 This is because con-
detect side-effects, delocalized plans, vestigial code, arceptually they refer to the same thing. Groups and mail

other common barriers to program understanding [Weltymessages are objects in the domain that the program deals
1995]. with directly.

3.3.1 Linking Object in Different Models. It is tempt-

ing to offer a solution to the above problems that simplyframe-based knowledge representation languages has been
“links” the objects in the domain model to the objects in thgproposed [Welty and Ferrucci, 1994], and will eventually be
code model which implement them, i.e. somehow conne@vailable as an extension to Classic. This extension delves a
Group in the domain model tdata-type-06n the code model. little deeper into second order representation, allowing for

There is a problem in linking these pairs. They clearly dsome inferences, though still under tight control.
represent the same concepts, however in the domain model This extension, briefly, identifies first order predicates,
they are classes and in the code model they are instancesludt can themselves be predicated, as special objects called
the classdata-type and a class can not be linked to anspanning objectsThey are given this name because the rep-
instance in a first order representation. resentation is divided into two (or monejiverses of dis-

It may seem that making the domain model objectgourse One universe contains the spanning object as an
instances would solve this problem. This would allow thenstance, the other contains the spanning object as a class.
pairs to be linked, but what are the domain objects instancde object spans these two universes througtrapping
of, and what becomes of their instances? All the peopldunctionthat defines only the relationship between the two
groups, and mail messages in the domain model woulgarts of the object. The mapping function can be set up e.g.
become instances of instances, which is also not allowed inta change the class in the one universe when the instance in
first order representation. the other universe changes.

Numerous combinations and representation “hacks” can Decidability problems are avoided with this approach by
be (and have been) attempted to address this problem, tséparating the objects that interact at the same level into dis-
there actually is no first order solution. The reason is simpltinct universes. No links are allowed between universes other
thatsoftware representations are second orddre correct than between the two parts of a spanning object via the map-
representation is to make the domain objects instances of thang function.

classdata-type and allow these instances to have instances of
their own. 4.1 Integrating Models Revisited

Spanning objects fully account for the problems of inte-
grating the domain and code models. Instancemaftype
andfunction (as well as a few others) are spanning objects
which span the two universes representing the code and
* Smalltalk does no inference with meta-classes. Theomain models, as shown in Figure 4. The mapping func-

whole purpose of representing the code-level knowledgéons insure that the domain model classes accurately reflect

this way was to employ inference to make informationtheir corresponding code model instances.

about the program more accessible to a maintainer try-

3.3.2 Existing SystemsAt a glance, it would seem that
this fits into the Smalltalk meta-class structure described i
Section 2.4.1, but it does not for two reasons:

ing to understand it. r%%?j%l data-type
« Data-types are not the only second order objects in the
software domain. Functions, for example, can be repre- mail-message_ group
sented in the domain model as plans [Devanbu and Lit-
man, 1991]. ni-Kr-list

message-05
Classic meta-individuals, described in Section 2.4.2, are

also inadequate for this second order representation problem. message-01 kbse-list

Each class in the domain model could have a meta-individual

which was linked to the corresponding instancdeoé-type

in the code-model. This does provide part of the representa- FIGURE 4. Spanning multiple universes.

tion desired, but, again, there is no inference. There is a

strong relationship between the domain model and code In order for the mapping function to be able to generate

model objects, and one goal of integrating the two models igsccurate and useful domain object,the domain knowl-

to verify that the corresponding objects accurately portragdge must be represented in the code maa@ther words,

each other. When the program changes, the domain modgk code model is a single model containing all the informa-

must reflect that change. tion needed to make the program eurd all the information

needed to help someone understand the domain.

domain model

4 Spanning Objects
4.1.1 Superclasses Aren't EnougfConsidering the

A slightly more powerful second order extension toView in Figure 4, it may seem that a first order solution could

be achieved by makingroup andmail-messagesubclasses of domain knowledge, and will be added to the next major
the classlata-type rather than instances. There are severalelease of Classic [Brachman, et al., 1991].
reasons why this will not work: It is important to note that within the realm of KBSE sys-
))) tems, none has provided for both the ability to specify
* Recall thaF in S_ectlo_n 2.3 it was stated thgt clas_ses CYbmain knowledge in a prograamd use that same specified
not have links in a first order representation. Figure §nqyjedge to assist in understanding the domain. It is likely

shows the representation of a program as a set Qfia¢ gne reason for this is that, as shown here, doing so
instances, and the purpose of this representation was FQquires a second order representation.

allow inference that could assist a maintainer in under-
standing the program. troup andmail-messagewvere
classes rather than instances, the links shown and thé&cknowledgments

the inference would not be possible. . T
My thanks to Dave Ferrucci whose initial idea about

» Group and mail-messageare simply not subclasses of multiple levels of instantiation (described in [Welty and Fer-
data-type If there were, then by superclass inheritancerucci, 1994]) led to the crystallization of these ideas regard-
their instances would also be instancesiath-type ing software. Thanks also to Peter Selfridge and Loren
Clearly a mail message or a group like those shown ifferveen for comments and feedback.

Figure 4, areot data-types.

4.2 Epistemology References

[Rrachman, 1983] Brachman, R. What IS-A is and Isn't: An
Analysis of Taxonomic Links in Semantic NetworlsEE Com-
puter.16(10). Pp. 30-36. Oct, 1983.

The second-order nature of the problem described here
a simple example of tHacompletenessf formal languages:
no language can represent itself.

The LaSSIE SIS had two models: a code model ando[%rachman and Schmolze, 1985Brachman, R. and Schmolze,

doma_m model, "?‘T‘P' each sepgrate model was represente 3'"An Overview of the KL-ONE Knowledge Representation Sys-
Classic. The facilities of Classic were then used to make the Cognitive Scienc€(2). Pp. 171-216. 1985

information in these models more accessible.

The extended code-level ontology shown in Figure 2 i$Brachman, et al., 1991]Brachman, R., McGuinness, D., Patel-
itself a programming language. Adding the domain knowl-Schneider, P., Borgida, A. and Resnick, L. Living with CLASSIC:
edge to the code model in a way which supported the goalg§hen and How to Use a KL-ONE-Like LanguaBenciples of

of a domain-centered approach (see Section 3.1) would hag@mantic Networklorgan Kaufman. Pp. 401-456. May, 1991.
required additionally representing all the facilities of Classic

in the code-level ontologin other words, representing Clas- [Carnap, 1947] Carnap, RMeaning and Necessity. of Chi-
sic in Classic. cago Press, 1947.

[Carnap, 1961] Carnap, Rlintroduction to Semantics and For-

5 Conclusion malization of LogicHarvard University Press, 1961.

Software understanding requires support not just fofCurtis, Iscoe, and Krasner, 1988|Curtis, B., Iscoe, N. and
understanding the code, but the domain in which the sofrasner, H. A Field Study of the Software Design Process for
ware operates. The domain knowledge should therefore h@rge SystemsCommunications of the ACN1(11). Pp. 1268-
represented explicitly and made available to maintainers asl&87. Nov, 1988.

distinct model.)
In order to insure that this represented domain know(lP&vanbu, Selfridge, and Brachman, 1990Pevanbu, P., Self-

edge is consistent with the domain knowledge in the softidge; P., and Brachman, R. LaSSIE - A Classification-Based Soft-

ware, and to facilitate understanding where specific domaiff@e [nformation Systeniroceedings of the 12th Intemational
concepts appear in the software, it is desirable to include thfgonference on Software Engineeribgoo.

domain knowledge as part of the software specificatio Devanbu and Litman, 1991] Devanbu, P. and Litman, D. Plan-
Such a specification must use the domain knowledge in t | ' ’
R

ased Terminological ReasonirgR ‘91 ProceedingsMorgan
ways: as part of the program and as a separate model L ufman Pp. 128-137. 1991
understanding the domain. o ' '

It was shown that supporting both these uses requiresj@gdel, 1931] Godel, K. Uber Formal Unentscheidbare Sétze der
second order representation, and a facility called spanningincipia Mathematica und Verwandter Systerivohatshefte fiir
objects was presented that can represent integrated code apgthematik und Physikblume 38, pp 173-198. 1931.

[Goldberg and Robson, 1983JGoldberg, A. and Robson, D. with a Large Code Databaderoceedings of the AAAI-90 Work-
Smalltalk-80 The Language and its Implementathmidison- shop on Knowledge-Base Managem&9@0.

Wesley. 1983. _ _ . .
[Selfridge, 1990] Selfridge, P. Integrating Code Knowledge with

[Henninger, 1995] Henninger, S. An Organizational Learning a Software Information Systeitoceedings of KBSA-Bp. 183-
Approach to Domain Analysi®roceedings of the 1995 Interna- 195. Sept., 1990.

tional Conference on Software Engineerit@95. _ _ _
[Selfridge, 1991] Selfridge, P. Knowledge Representation Sup-

[Iscoe, 1991]Iscoe, N., ed.Proceedings of the ICSE 1991 port for a Software Information SysteRroceedings of the Sev-
Domain Modeling WorkshopAustin Laboratory for Software enth Conference on Artificial Intelligence ApplicatioRp. 134-
Engineering and Computer Science. May, 1991. 140. 1991.

[Quine, 1964] Quine, W.From a logical point of viewHarvard [Welty and Ferrucci, 1994] Welty, C., and Ferrucci, What's in
University Press, 1964. an InstanceRPI Computer Science Technical Report. 1994.

[Selfridge and Brachman, 1990]Selfridge, P., and Brachman, R. [Welty, 1995] Welty, C. An Integrated Representation for Soft-
Supporting a Knowledge-Based Software Information Systerware Development and DiscoveBh.D. Thesis, RPI Computer
Science Dept., Troy, NY. June, 1995.

	Towards an Epistemology for Software Representations
	Abstract
	The KBSE community is actively engaged in finding ways to represent software and the activities t...
	Keywords: Knowledge Representation, Domain Modeling, Program Understanding, Software Information ...
	1 Introduction
	2 First Order Representations
	2.1 Classes, Instances, and Links
	2.2 Superclass Inheritance
	2.3 Identifying Non-First Order Objects
	2.3.1 Instances of Instances
	2.3.2 Links between Classes

	2.4 Extensions to First Order Systems
	2.4.1 Smalltalk Meta-Classes
	2.4.2 Classic Meta-Individuals

	3 Representing Software
	3.1 Objects in the Application Domain
	3.2 Objects in the Software Domain
	3.3 Integrating the Code and Domain Models
	3.3.1 Linking Object in Different Models
	3.3.2 Existing Systems

	4 Spanning Objects
	4.1 Integrating Models Revisited
	4.1.1 Superclasses Aren’t Enough

	4.2 Epistemology

	5 Conclusion
	Acknowledgments
	References

