
ArchTrace: Policy-Based Support for Managing Evolving
Architecture-to-Implementation Traceability Links

Leonardo G. P. Murta* André van der Hoek** Cláudia M. L. Werner*
*Federal University of Rio de Janeiro

COPPE - System Eng. and Computer Science
P.O. Box 68511

Rio de Janeiro, RJ 21945-970 Brazil
Phone: +55(21) 2562-8675

{murta, werner}@cos.ufrj.br

**University of California, Irvine
Department of Informatics

444 Computer Science Building
Irvine, CA 92697-3440 USA
Phone: +1(949) 824-6326

andre@ics.uci.edu

Abstract

Traditional techniques of traceability detection and
management are not equipped to handle evolution.
This is a problem for the field of software architecture,
where it is critical to keep synchronized an evolving
conceptual architecture with its realization in an
evolving code base. ArchTrace is a new tool that ad-
dresses this problem through a policy-based infra-
structure for automatically updating traceability links
every time an architecture or its code base evolves.
ArchTrace is pluggable, allowing developers to choose
a set of traceability management policies that best
match their situational needs and working styles. We
discuss ArchTrace, its conceptual basis, its implemen-
tation, and our evaluation of its strengths and weak-
nesses in a retrospective analysis of data collected
from a 20 month period of development of Odyssey, a
large-scale software development environment. Results
are promising: with respect to the ideal set of trace-
ability links, the policies applied resulted in 95% pre-
cision at 89% recall.

1. Introduction

With the introduction of software architecture as a
critical artifact in the software life cycle, a new prob-
lem has emerged: traceability between an architectural
description and its corresponding source code must be
maintained as they each evolve over time. Software
architectures are currently used as a basis for run-time
evolution [18], product selection in software product
lines [6], new testing approaches [20], impact analyses
[25], and numerous other activities that will not operate
properly without a detailed and accurate mapping from

an architectural description to relevant corresponding
source code artifacts.

The scenario on which we focus in this paper con-
sists of a conceptual architecture and its corresponding
source code each evolving separately but needing to be
accurately traced to each other. We know that an archi-
tecture simply is not static over time [12] and we cer-
tainly know that code evolves over time. Our objective
is to make sure that, in the face of such evolution,
proper traceability links amongst the two are main-
tained at all times so one can navigate from any version
of any architectural element to its corresponding source
code and, vice versa, can navigate from any version of
a source code artifact and find in which version(s) of
which architectural elements it is used.

To address this problem, we present a novel solu-
tion in the form of ArchTrace, a tool that relies on two
critical observations: (1) rather than reconstructing
traceability links after some significant amount of time
has passed, it continuously updates traceability links in
response to each and every change committed by a
user, and (2) the specific update to be made is deter-
mined by an actively specified set of traceability man-
agement policies. The result is an approach that can be
tailored to different user practices, takes advantage of
the knowledge encoded in the policies, and accommo-
dates incorporation of new policies.

The rest of this paper is organized as follows. Sec-
tion 2 presents a motivating example to ground the
ensuing discussion. Section 3 introduces the high level
approach underlying ArchTrace, which is followed by
a discussion of its implementation in Section 4. Section
5 evaluates the approach. Section 6 discusses related
work and we conclude the paper in Section 7 with an
outlook at our future work.

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

2. Motivating example

In this section, we provide an example that we will
use throughout the paper to describe the features of
ArchTrace. In this example, a simple architecture is
defined for a word processing application. This archi-
tecture has three components: Print, Toolbar, and Dis-
play. All components exist in one version and the
source code that implements these components is or-
ganized into three directories: Model, View, and Con-
troller. These directories contain, respectively,
Printer.java and Action.java, EditingWindow.java, and
CommandDispatcher.java, as shown in the right hand
side of Figure 1.

Figure 1: Initial scenario of the example
Figure 1 also shows that the first version of the

Print component is immutable as it was already com-
mitted to the configuration management (CM) reposi-
tory and can no longer be changed (unless, of course, a
new version is created). Further, the first version of the
Print component is implemented by two source files,
Printer.java and Action.java; the first version of the
Toolbar component is implemented by two source
files, Action.java and CommandDispatcher.java; and
the first version of the Display component is imple-
mented by only one source file, EditingWindow.java.
Note that the files that implement the Print component
are also immutable.

The first step in our scenario consists of an archi-
tectural change, namely to create version 2.0 of the
Print component. The new version inherits the trace-
ability links of the previous version, which is expected
since at this point nothing else has happened. Dashed
lines represent these new traceability links in Figure 2.

Figure 2: Component version creation

The second step consists of a series of changes to
the code: (1) checking out Action.java, (2) modifying
the checked out copy, (3) moving it to the Controller

directory, and (4) in the process of checking in the new
version, changing its name to Command.java. The set
of traceability links should be updated accordingly.
Specifically, architectural elements that used to link to
version 1 of Action.java now should link to Com-
mand.java, which is version 2 since it represents an
evolutionary step from Action.java. However, we
should take into account the immutable state of the first
version of the Print component. As an immutable ver-
sion, its traceability links cannot be updated. Figure 3
shows the resulting set of traceability links. Two links,
from the Print component (version 2.0) and Toolbar
component (version 1.0), were redirected from Ac-
tion.java to Command.java, and one traceability link,
from version 1 of the Print component, was kept to
point to Action.java due to immutability restrictions.

Figure 3: Expected scenario after the change

It is worth noting that, for illustration purposes, the
example intentionally represents a simple scenario of
evolving artifacts. It, however, provides concrete situa-
tions in which evolution of traceability links is difficult,
even with automated tools: architectural versioning,
immutability, renaming of artifacts, and selectively
updating a set of traceability links.

3. Approach

The goal of ArchTrace is to support the evolution
of already established traceability links. We are explic-
itly not concerned with creating an initial set of links,
which tends to be the domain of the techniques of data
mining [21, 24], information retrieval [4, 13], or syn-
tactic analysis [7]. Generally speaking, the problem that
we address in this paper can be stated as follows: given
an initial set of traceability links, and given that both an
architecture and its implementation can evolve inde-
pendently, how can the traceability links be updated
with the addition of new links, removal of existing
links, and changes in existing links to ensure that each
architectural element is at all times accurately linked to
its corresponding source code artifacts (and vice
versa)?

In support of this goal, we have designed our ap-
proach to consist of the following features: (1) a pol-
icy-based infrastructure, allowing the matching of poli-
cies to work practices; (2) policies that specifically take

Toolbar

Display

Print 1.0 * Model

View

Printer.java (1.0 *)
Action.java (1.0 *)

EditingWindow.java (1.0)
Controller

CommandDispatcher.java (1.0)

1.0

1.0

[* Immutable version]

Toolbar

Display

Print
1.0 *

Model

View

Printer.java (1.0 *)
Action.java (1.0 *)

EditingWindow.java (1.0)
Controller

CommandDispatcher.java (1.0)

2.0

1.0

1.0

[* Immutable version]

Toolbar

Display

Print
1.0 * Model

View

Printer.java (1.0 *)
Action.java (1.0 *)

EditingWindow.java (1.0)
Controller

CommandDispatcher.java (1.0)
Command.java (2.0)

2.0

1.0

1.0

[* Immutable version]

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

advantage of their knowledge of architectural and
source code artifacts to make educated guesses on what
to do upon architectural or source code change events;
(3) policies that, when appropriate, request human
input – but do so far less often than just maintaining all
links manually; (4) and policies that act as either rules,
deciding upon actions to take, or constraints, limiting
the kinds of actions that can be taken.

In response to new “check in” events, we execute
one or more policies that each governs a particular
aspect of traceability link evolution. Policies are inten-
tionally simple, each capturing one small behavior of
traceability link evolution that matches potential ac-
tions that a user may take (a policy that deals with
checking in a new architectural element, a policy that
deals with removing a source file, a policy that deals
with protecting immutable artifacts, etc.). Policies,
thus, have a separate responsibility. But, because exe-
cution of one policy can result in the triggering of one
or more other policies, the result is a set of closely
collaborating policies that together are responsible for
appropriately updating traceability links.

The policies are atomic elements that can be en-
abled and disabled individually. This is to support
different work practices and different CM systems.
Some developers establish certain practices on how to
evolve their artifacts, and different CM systems estab-
lish different procedures [9]. Rather than attempting to
build a single all-encompassing solution, we adopt a
pluggable infrastructure that supports the addition of
new policies (as long as they adhere to the program-
matic interface of ArchTrace). A secondary, but as
important benefit is that it becomes possible to disam-
biguate policies: when multiple policies are enabled, it
is possible that multiple policies fire upon a check in.
In some cases, this is desired, but in other cases it may
be possible that conflicting policies are used or that
certain policies apply to certain situations only (i.e., a
developer may choose to use one set of policies during
initial phases of development, when many new ele-
ments are added, and another set of policies during
maintenance, when the set of elements stays relatively
constant).

Our approach distinguishes four classes of poli-
cies: architectural element evolution policies, imple-
mentation evolution policies, pre-trace policies, and
post-trace policies. Architectural element evolution
policies fire when an architect makes modifications to
an architecture, and implementation evolution policies
fire when the source code evolves.

Pre-trace policies operate just before a new link is
added or an old one is removed, acting as constraints.
Their primary task is to detect the introduction of in-
consistencies between the traceability link that is added

or removed and the set of traceability links already
existing. Should such an inconsistency arise, a pre-trace
policy can veto the addition or removal, prohibiting the
action to complete. An example of a pre-trace policy is
one that prohibits changing links of immutable archi-
tectural elements: their traceability links generally
should stay the same over time, so any suggested
change should not be allowed.

Post-trace policies are executed after the creation
or removal of traceability links has actually been com-
pleted. This allows the definition of policies that update
additional traceability links when traceability links are
added or removed. For example, when an architectural
element needs to be updated with a newer version of a
source file, an implementation element evolution policy
adds the link, but a post-trace policy is responsible for
removing the old link. This, in turn, may trigger other
policies, in effect creating a rolling set of policies of
different types that are executed.

Policies may request assistance from users; they
are not meant to operate automatically or be “hidden”
at all times. Rather, when it is pertinent that a user
chooses one of two courses of action, or when addi-
tional human input is needed, a policy can leverage the
interface of ArchTrace to get the input it needs. While,
in our experience, it is relatively rare that this happens,
it is critical to support this functionality. Should a
“wrong” decision be made by a policy at some critical
juncture, the set of traceability links can become sig-
nificantly out of sync over time with those that actually
should exist. Rather than automatically guessing an
alternative, it is better to request user assistance. Note
that the reason that this is relatively rare is because the
users are involved in the selection of active policies in
the first place: they already have selected a set of poli-
cies that describes how they operate and wish to be
supported; only in exceptional circumstances will it be
necessary to request clarification.

4. Implementation

ArchTrace is implemented in Java and assumes the
use of xADL 2.0 [10] to describe software architectures
and Subversion [8] to store source code. As we detail
in the following, however, the architecture of
ArchTrace is constructed to allow easy addition of
other architectural tools and/or CM systems.

4.1. Overall architecture

Figure 4 presents the ArchTrace architecture. It
consists of six components, four of which standard
(shown as solid grey boxes) and two of which custom

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

(shown as patterned boxes). The custom components
depend on the particular architecture evolution envi-
ronment and CM system used. As stated, we rely on
xADL 2.0 and Subversion, but because the Architec-
ture Connector and Repository Connector components
are designed with abstract interfaces, the rest of
ArchTrace is independent of the details of those two
components.

Connector components insert tool-specific listen-
ers. Upon receiving events (illustrated using dashed
lines), they pass those on to the generic Event Listening
component, which is responsible for interpreting the
data contained in the events and invoking the appropri-
ate part of the Policy Triggering component to begin
the updating of traceability links.

The Policy Triggering component coordinates
which specific policies are executed at what time in
order to manage the set of traceability links and evolve
them by adding and removing links. As discussed in
Section 3, this kind of coordination is necessary be-
cause a policy may recursively trigger the execution of
other policies, resulting in them together performing
relatively complex tasks. For instance, in the specific
case of the example in Section 2, the renaming and
moving of a source file, a policy that updates the archi-
tectural element with the new link will trigger another
policy that removes the older traceability link. More-
over, the policy that removes the older traceability link
may trigger a third policy that prohibits this removal
when the architectural element is marked as immutable.

Note that this architecture fully supports collabora-
tive development. Because the CM system is responsi-
ble for resolving conflicts, perhaps with the help of the
user performing some merges, traceability links simply
evolve based on what is eventually checked in.

Figure 4: ArchTrace architecture

Actions that result in changes to the set of trace-
ability links are actually enacted by the Traceability
component. Since traceability links are typically stored
either in the architecture description or in the CM sys-
tem (by checking in a description of an architecture

with the source code), this component is responsible
for actually supporting the creation, removal, and que-
rying of traceability links. It interacts with both the
Architecture Connector and Repository Connector
components to build upon their generic interfaces and
operate independently.

Finally, the Policy Manager component is respon-
sible for managing which policies are active at what
time. During bootstrap of ArchTrace, this component
loads all policies, instantiates them, and allows the user
to activate and deactivate specific policies. Here is
where the pluggability of ArchTrace comes into play:
when new policies are created, these new policies, once
loaded by this component, will act as any of the eight
policies that we already built: they can be enabled,
disabled, executed, triggered by other policies, etc.

It should be noted that, while ArchTrace typically
operates in the background, it is possible for architects
or developers to query ArchTrace at any time in the
software development lifecycle to visualize the trace-
ability links among architectural elements and their
implementation. For instance, this kind of feature is
essential for performing some activities such as impact
analysis. Shown in Figure 5, ArchTrace allows explora-
tion of the set of links: one can see all the links for a
given architectural element or choose a file for which
one wants to know to which architectural elements it
belongs.

Figure 5: ArchTrace screenshot

4.2. Policies API

Each ArchTrace policy is implemented as a Java
class that follows a specific interface provided by
ArchTrace. Every policy must provide a short descrip-
tion and the rationale behind the policy. Moreover, a
method called “execute” should be implemented. The
arguments of this method vary depending on the type
of policy. The pre-trace and post-trace policies receive
the link that is being added or removed, as well as the

Event Listening

Architecture
Connector

Repository
Connector

Policy Triggering Traceability

Policies
implementation
(java classes)

Policy Manager

Architecture
(xADL)

CM repository
(Subversion) Policies

descriptor
(XML)

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

action that is causing that link to be added or removed.
An architectural element evolution policy receives the
architectural element that is being evolved and the
details of how its links are being evolved. Finally, an
implementation evolution policy receives the configu-
ration item and, once again, the details of how its links
are being evolved. Using this information, as well as
the querying capabilities of the Traceability component
listed in Figure 4, policies should have sufficient in-
formation to make their decisions. If that is not the
case, they can use the user interface of ArchTrace to
request additional information from the user. Further
details regarding ArchTrace internals can be found at
[14].

4.3. Built-in policies

We have implemented an initial set of eight poli-
cies. We developed them based on informally observ-
ing ourselves and other developers in action. Table 1
presents a list of the policies together with their motiva-
tion and related policies (“REL” column).

 During the design of ArchTrace, we simulated a
set of hypothetical scenarios in which different changes
were made to an architecture and its implementation
and observed the effects the changes should have had
on the traceability links among the elements. As a first
observation, we noted that, when a new version of a
source file is available, it is necessary to use this ver-
sion for architectural elements that are under develop-
ment. This led us to create three different atomic poli-
cies: addition of new traceability links when new ver-
sions of source files are available (policy 8), removal
of old traceability links when new traceability links are
created (policy 5), and denial of traceability links crea-
tion and removal to immutable architectural elements
(policy 2). Together, these policies ensure traceability
links are updated to newer versions, but that the links
of immutable architectural elements are kept un-
touched.

Another common pattern that we observed was
that, when a new version of an architectural element is
created, it should inherit all traceability links from its
ancestor. This led us to policy 7, which copies all
traceability links from the previous version of an archi-
tectural element when a new version is created.

In addition, depending on the combination of the
policies described above, a given architectural element
may have traceability links assigned to more than one
version of the same source code. This situation should
be avoided depending on the underling programming
language (i.e., compiling and running a system with
two files in which the same Java class is defined is
prohibited by the language); this led us to create policy
3. Additionally, when a source file undergoes a name
change, users that are not aware of the name change
may erroneously establish a traceability link to the
original artifact. In the example of Figure 3, Ac-
tion.java was renamed to Command.java. In this sce-
nario, the user is warned by policy 1 if they try to es-
tablish a traceability link to Action.java, but can use the
interface of ArchTrace to nonetheless establish the link.

Because most CM systems allow hierarchical or-
ganization of source files, a potential redundancy
emerges when both the container and the contained are
linked. To avoid this situation, both proactively and
passively, we implemented policies 4 and 6. The poli-
cies simply link to the container, indicating that it and
all of its contents belong to a particular architectural
element.

4.4. Policy triggering example

We now revisit the example of Section 2 to de-
scribe ArchTrace’s handling of the transformation from
the initial scenario, shown in Figure 1, to the final sce-
nario after the changes, in Figure 3.

After the first action is performed by the devel-
oper, namely the creation of a new version of the Print
component, ArchTrace receives an architectural evolu-

ID TYPE DESCRIPTION REASONING REL

1 Interactive constraint
Class: pre-trace

Suggests traceability links to more recent configuration item
version if the user creates a traceability link to older version.

When different versions of a configuration item have different names
or paths, a traceability link should be created to its newer version.

2 Automatic constraint
Class: pre-trace

Denies traceability links creation or removal on immutable
architectural elements.

In some circumstances, it is not desirable to evolve the traceability
links of architectural elements that are marked as “immutable”.

8

3 Automatic constraint
Class: pre-trace

Denies traceability links creation to more than one version of
the same configuration item.

Some programming languages do not support more than one version
of the same configuration item in the same runtime environment.

5,8

4 Automatic constraint
Class: pre-trace

Denies traceability link creation to sub configuration items if
the composite configuration item is already traced.

If a composite configuration item is linked from a given architectural
element, it is redundant to have traceability links to its parts.

6

5 Automatic rule
Class: post-trace

Removes traceability links from old configuration item ver-
sions when a traceability link is created to a newer version.

Some programming languages do not support more than one version
of the same configuration item in the same runtime environment.

3,8

6 Automatic rule
Class: post-trace

Removes traceability links from sub configuration items if a
traceability link is created to the composite configuration item.

If the composite configuration item is traced from a given architectural
element, it is redundant to have traceability links to its parts.

4

7 Automatic rule
Class: arch. evol.

Copies all existing traceability links to the new version of the
architectural element.

Typically, new architectural element versions have the same traceabil-
ity links of the version from which they were originated.

8 Automatic rule
Class: impl. evol.

Automatically updates traceability links when a new version of
a configuration item is available.

Architectural elements that have traceability links to a specific con-
figuration item should be updated with links to newer versions.

2,3,5

Table 1: ArchTrace built-in policies

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

tion notification. This notification triggers policy 7,
which is responsible for copying all traceability links
from the first version of the Print component to the
second version of the same component. After the exe-
cution of policy 7, both versions of the Print compo-
nent have equivalent sets of traceability links. How-
ever, the first version is immutable, meaning that its
traceability links will never change. On the other hand,
the second version may have its traceability links
evolved in the future. Figure 2 shows the scenario after
the execution of policy 7.

The developer performs a second action, which
consists of first changing the code of Action.java, then
moving it to the Controller directory, and finally
changing its name to Command.java. When this overall
change is committed, a notification is sent to
ArchTrace, which triggers policy 8, creating a new
traceability link from the Toolbar component (version
1.0) to Command.java (version 2.0). However, the
execution of policy 8 triggers policy 5, which is re-
sponsible for removing the old traceability link from
the Toolbar component (version 1.0) to Action.java
(version 1.0).

Policy 8 is triggered two more times for the same
notification event. The second triggering of policy 8
tries to create a traceability link from the Print compo-
nent (version 1.0) to Command.java (version 2.0).
However, policy 2 denies the creation of this traceabil-
ity link because the Print component (version 1) is
marked as immutable. Finally, the third triggering of
policy 8 creates a traceability link from the Print com-
ponent (version 2.0) to Command.java (version 2.0).
This is allowed by the pre-trace policy 2, which is
triggered, but does not undertake action since version
2.0 of the Print component is not immutable. Because
the action is allowed, the creation of this traceability
link triggers post-trace policy 5, which removes the old
traceability link from the Print component (version 2.0)
to Action.java (version 1.0).

5. Evaluation

To evaluate the effectiveness of ArchTrace and its
current set of policies, we executed a retrospective
study of an existing system. The system, Odyssey [23],
is a large-scale software development environment
being developed at COPPE/UFRJ since 1997.

To perform the study, we gathered the Odyssey
versioning data produced during the period of July 9,
2003 until March 1, 2005. We used and reorganized
the data to replicate the original check-ins that took
place, and then replayed those check-ins anew into a
CM repository instrumented with ArchTrace. The re-

sult was that, during playback, we received all the
events that would have taken place had ArchTrace been
used in the first place, allowing us to reproduce the
original scenario of development and maintenance,
covering both major architectural changes and a host of
source code changes. This strategy made it possible to
look back in time and understand whether our policies
would have operated properly in establishing and
evolving the right set of traceability links.

5.1. Study planning

The study consists of four steps. The first step con-
sists of the initial detection of the proper traceability
links between the Odyssey architecture and its source
code on July 9, 2003. This initial set of traceability
links was manually identified by Odyssey developers
by examining the architectural definition and its reali-
zation as components, connectors, and interfaces in the
source code.

The second step is the evolution of the traceability
links during 20 months of Odyssey development and
maintenance. Replaying the set of check-ins that were
originally performed in this period of development and
maintenance, the initial set of traceability links was
transformed, step-by-step as triggered by each check-
in, into a new set of traceability links. This evolved set
of traceability links is named Te.

The third step consists of the detection of the
traceability links that should exist on March 1, 2005
among the Odyssey architecture and source code. This
set of ideal traceability links, named Ti, was manually
created by Odyssey developers by examining the actual
architecture as evolved over the period of time and
identifying the source files that implement each archi-
tectural element.

Finally, the fourth step consists of the comparison
of the set of ideal traceability links (Ti) with the set of
actual traceability links produced by ArchTrace (Te).
This comparison illustrates the effectiveness of the
ArchTrace policies in evolving traceability links.

5.2. Environment Preparation

Table 2 shows some Odyssey statistics. We note

that the system is non-trivial, consisting of over 2700
files, and that the study also represents a significant set
of data with a total number of commits during the study
period of 307 and a total number of revisions to indi-
vidual artifacts (both architectural and at the implemen-
tation level) of close to 8500.

At the beginning of the playback, we turned on all
policies except 1 and 3. Policy 3 is not designed to

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

operate concomitant with policies 5 and 8; as the effect
is either preventive (policy 3) or proactive (policies 5
and 8) and we chose a proactive approach (others may
choose a more cautious route, in just using policy 3).
Policy 1 is designed to operate in an interactive man-
ner, at times requesting user input. We turned off any
policies involving interactivity to avoid ourselves giv-
ing potentially “better” input than original developers
would have given; our results, thus, form a lower
bound of what is theoretically possible.

Table 2: Odyssey statistics
Files 2703 Repository size 40158 KB
Revisions 8463 Total commits 307
Unique tags 13 First revision date July 9, 2003
Unique branches 7 Last revision date March 1, 2005

5.3. Statistics Gathering

This retrospective study aims to analyze different
statistics gathered from the ArchTrace execution. To
allow this automatic gathering, we implemented a sta-
tistics gathering aspect and weaved it into ArchTrace.
The aspect is composed of 19 pointcuts that collect the
following 27 metrics for each of the 307 configura-
tions: the configuration number, author, and date; the
number of configuration items added, removed, and
modified; the number of executions of each policy; the
number of traceability links added and removed manu-
ally; the number of traceability links added and re-
moved automatically; the number of traceability link
additions and removals lost; the number of indirect
traceability links added and removed manually; the
number of indirect traceability links added and re-
moved automatically; and the number of indirect trace-
ability link additions and removals lost.

In this context, indirect traceability links are trace-
ability links implicitly detected when a given traceabil-
ity link is established to a composite artifact. For ex-
ample, if a traceability link is established to a directory,
all files and subdirectories inside this directory are also
implicitly linked (even though no links exist since our
policies handle this recursive traceability). The effect
of losing a traceability link to a composite artifact,
then, can have significant effects on the functioning of
the policies. Hence, we monitored both direct and indi-
rect links in our study.

5.4. Study Execution

Execution of the study comprised two major steps:
(1) playback of existing check-ins and (2) analysis of
lost traceability links. The first step is performed
through a tool that we explicitly wrote to submit,
check-in by check-in, the accumulated version history

of Odyssey. The tool simply goes through each check-
in, recreates a workspace, populates it with the known
changes, and commits the workspace. The tool pauses
after each step, waiting for manual confirmation that it
is okay to move to the next check-in in order to provide
time for the analyses in step two.

The second step is performed after each individual
check-in has been performed and ArchTrace has re-
sponded by evolving the traceability links. We then
manually checked if there were any lost traceability
links. We kept track of two kinds of lost traceability
links: lost additions (i.e., traceability links that ideally
exist, but were not added by ArchTrace), and lost re-
movals (i.e., traceability links that ideally do not exist,
but were not removed by ArchTrace).

It is important to reiterate that the kinds of changes
that we replayed were both at the source code level and
the architectural level. Though architectural changes
took place less frequently (as one would expect in any
kind of project), the architecture of Odyssey went
through three major iterations: 1.0.0, 1.1.0, and 1.2.0.
With each release, we checked in the architectural
elements, triggering architectural element evolution
policies. Generally, we allowed ArchTrace to update
the traceability links itself, except one time when the
architecture evolved with the addition of four new
components. An initial set of traceability links was
established manually at that time for those components.

We have made available our complete results, both
raw and processed, at http://www.cos.ufrj.br/~murta/
ArchTrace/odyssey.html.

5.5. Qualitative Analysis

During the 20 months of Odyssey development
and maintenance, 77 versions of 21 architectural ele-
ments were created. Moreover, 3031 configuration
items were added, renamed, or moved, 154 configura-
tion items were removed, and 1563 modifications were
applied to existing configuration items. Most configu-
ration items were added in July 2003, as shown in
Figure 6. This reflects the beginnings of our study.
After November 2003, most activities were related to
modifications of existing configuration items, with just
a few configuration item additions and removals.

0

500

1000

1500

2000

2500

C
on

fig
ur

at
io

n
Ite

m
s

Ju
l/0

3

Au
g/

03

Se
p/

03

O
ct

/0
3

N
ov

/0
3

D
ec

/0
3

Ja
n/

04

Fe
b/

04

M
ar

/0
4

Ap
r/0

4

M
ay

/0
4

Ju
n/

04

Ju
l/0

4

Au
g/

04

Se
p/

04

O
ct

/0
4

N
ov

/0
4

D
ec

/0
4

Ja
n/

05

Fe
b/

05

M
ar

/0
5

Removed

Added

Modified

Figure 6: Configuration items evolution
The results of which policies were active during

the study are shown in Figure 7. As expected, policies

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

2, 5, and 8 were used most often, as they represent
responses to the normal evolution of configuration
items (e.g., links from architectural elements are up-
dated to reflect newer versions of the files).

0

500

1000

1500

2000

2500

Ex
ec

ut
io

ns

Ju
l/0

3
Au

g/
03

Se
p/

03
O

ct
/0

3
N

ov
/0

3
D

ec
/0

3
Ja

n/
04

Fe
b/

04
M

ar
/0

4
Ap

r/0
4

M
ay

/0
4

Ju
n/

04
Ju

l/0
4

Au
g/

04
Se

p/
04

O
ct

/0
4

N
ov

/0
4

D
ec

/0
4

Ja
n/

05
Fe

b/
05

M
ar

/0
5

Policy 1 Policy 2

Policy 3 Policy 4

Policy 5 Policy 6

Policy 7 Policy 8

Figure 7: Execution of different policies
The spike in November 2003 indicates an impor-

tant event. At that time, a major reorganization of the
Odyssey source code was performed. This significantly
affected the names of packages and the locations of
existing classes. Policies 5 and 8 dealt successfully
with this situation by updating traceability links to
reflect the new organization of the source code. Figure
7 and Figure 8 further illustrate the effects of this event.
Figure 7 shows that only policies 5 and 8 were needed
to support the reorganization, and Figure 8 shows that
those two policies automatically added and removed
many traceability links while losing a few.

0

200

400

600

800

Tr
ac

ea
bi

lit
y

Li
nk

s

ju
l/0

3

ag
o/

03

se
t/0

3

ou
t/0

3

no
v/

03

de
z/

03

ja
n/

04

fe
v/

04

m
ar

/0
4

ab
r/0

4

m
ai

/0
4

ju
n/

04

ju
l/0

4

ag
o/

04

se
t/0

4

ou
t/0

4

no
v/

04

de
z/

04

ja
n/

05

fe
v/

05

m
ar

/0
5

Lost Addition
Lost Removal
Manual Addition
Manual Removal
Automatic Addition
Automatic Removal

Figure 8: Traceability links evolution

Policy 7, which is responsible for copying existing
traceability links to new versions of architectural ele-
ments, was triggered on May, August, and September,
2004, meaning the three updates to the Odyssey archi-
tecture. Policy 2 was frequently triggered to deny the
evolution of traceability links related to immutable
architectural elements, since those are now checked in,
frozen, and should no longer change.

5.6. Quantitative Analysis

To conclude the study, we compared the set of
traceability links evolved by ArchTrace (Te) with the
set of ideal traceability links detected by Odyssey de-
velopers (Ti). Te comprises 222 traceability links and
has coverage of 638 artifacts. On the other hand, Ti
comprises 235 traceability links and has coverage of
691 artifacts.

Figure 9 presents the summative results of the
analyses, illustrating that, at the end of the 20 month

evolution, the set of traceability links evolved by
ArchTrace (Te) has 12 out of date traceability links,
affecting 113 artifacts. Moreover, 13 traceability links
were lost (|Ti-Te|), affecting 53 artifacts due to the fact
that some of the lost links pointed to compound arti-
facts (i.e., directories). Overall, ArchTrace correctly
identified 89% of the ideal set of traceability links and
traced 76% of the source code to corresponding archi-
tectural elements in the context of the Odyssey project.

To put these figures in perspective, we borrow two
metrics from the information retrieval field [5]: preci-
sion (the fraction of retrieved documents which are
known to be relevant) and recall (the fraction of known
relevant documents which were effectively retrieved).
These two metrics apply here in the sense that we can
use precision to show the percentage of actually identi-
fied traceability links that are correct
(|Ti∩Te|÷|Te|=95%; showing that 5% of the traceability
links that were found are inaccurate) and recall to show
the percentage of ideal traceability links that was actu-
ally identified (|Ti∩Te|÷|Ti|=89%; showing we missed
merely 11% of the traceability links that should have
been found).

Figure 9: Quantitative analysis summary

5.7. Final Remarks

The data shows that ArchTrace largely operated
correctly, even during the reorganization of Odyssey.
Traceability links to one directory were lost, however,
during this step. This problem occurred because of an
interesting situation: a directory was erroneously de-
leted during the reorganization and had to be reintro-
duced some revisions later. Not surprisingly, this is a
situation with which ArchTrace cannot deal at present.
We note, however, that the traceability links of the old
versions were fully available, so it would be easy for
the developer to reestablish them by hand.

At other times, some traceability links were lost
when new artifacts were introduced completely out of
context of the existing artifacts. A possible solution to
address this problem is the construction of a policy that
employs information retrieval techniques [11] or syn-
tactical analysis [7] to detect traceability links. These
techniques do not depend on the history of an artifact,

Coverage (artifacts)

76%

8%16%

Traceability Links

89%

5% 6%

% # %
Correctly Evolved 210 89% 525 76%
Out of Date 12 5% 113 16%
Lost 13 6% 53 8%
Total 235 100% 691 100%

Traceability Links Coverage (artifacts)

Correctly Evolved
Out of Date
Lost

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

so they have the potential to enhance the current set of
policies.

Finally, we observe that the study was performed
over a relatively stable system and begun after some
years of development had taken place. It is unclear how
the current set of policies would perform on a new
project. We plan on performing further studies and
developing additional policies to understand and en-
hance ArchTrace’s behavior in this regard.

6. Related work

Some approaches integrally combine the architec-
ture definition with the source code, avoiding the need
for traceability links. For instance, ArchJava [2] en-
hances the Java programming language with special
keywords to integrate an architecture description inside
the source code. Similarly, XDoclet [22] uses source
code annotations to define EJB components. Clearly,
these kind of approaches have their value. However,
many situations require architectural representations
separate from the source code [17]. In these situations,
our approach represents an important contribution.

In the traceability research area, existing ap-
proaches are mainly concerned with traceability detec-
tion. For instance, De Lucia et al. [11] employ informa-
tion retrieval techniques to detect traceability links
from source code to use cases and test cases. While
useful in and of themselves, for our problem they are
inadequate. At best, it is necessary to rerun the entire
algorithms to redetect proper traceability links. Be-
cause this ignores any previous information, the results
obtained are typically not as strong as one would with
ArchTrace. Nonetheless, we view this technique com-
plementary to ArchTrace and believe this kind of ap-
proach can be used together with ArchTrace, helping to
detect initial traceability links that will subsequently be
evolved using ArchTrace.

Work in the consistency checking research area
helps to detect inconsistencies among different soft-
ware representations. Reiss [19], Nentwich et al. [15],
and Abi-Antoun et al. [1] map specific representations
of software artifacts into a generic representation: rela-
tional database, XML, and tree structured data, respec-
tively, and then allow the construction of syntactical
constraints among these representations, such as well-
formedness rules and direct transformations. ArchTrace
differs from these approaches. First, ArchTrace is a
proactive tool, which evolves traceability links due to
changes in software artifacts, not only reporting but
also trying to avoid possible inconsistencies. Moreover,
ArchTrace uses the history dimension to detect the
evolution of traceability links over time. Finally,

ArchTrace deals with architectural elements, which are
coarse grained and cannot have all their traceability
links directly detected via syntactical constraints. Nev-
ertheless, we once again believe that these approaches
can work together with ArchTrace, reporting syntacti-
cal inconsistencies between architectural elements and
source-code elements, i.e., helping to detect when the
automated policies may have done something wrong.
By utilizing these techniques in some constraint poli-
cies, thus, we believe our approach can be made more
powerful.

The research area of hypertext can be useful as an
infrastructure for our work. This research area contrib-
utes mechanisms to manage the versioning of links
among objects (e.g.: Chimera [3] and Molhado [16]).
Instead of storing the links in xADL 2.0, we could store
them in a hypertext tool. However, by themselves these
tools are not sufficient to address our problem as they
lack the policy-based enactment that is at the heart of
ArchTrace.

7. Conclusion

This paper has presented a new approach for man-
aging the evolution of traceability links between a
software architecture and its implementation. Existing
traceability approaches have focused on creating one-
time snapshots of traceability links. While useful, the
next problem is to evolve these snapshots. This is the
focus of the work presented here: policy-based evolu-
tion of traceability links. The idea is that, by staying in
lockstep with architectural and source code changes, it
is much easier to solve small incremental problems of
maintaining traceability. Through our policies, this is
exactly what we do – and we achieve high quality re-
sults in both precision and recall.

We therefore view this paper as a successful exis-
tence proof of our technique and anticipate it to open a
range of additional issues, questions, and refined ap-
proaches. While promising, much more work remains
to be done. First and foremost, we recognize that, ide-
ally, we should achieve 100% precision and recall.
This, however, is unrealistic. No set of policies can
anticipate every single potential change. However, with
careful choosing by the user of which policies are ac-
tive at which time, with carefully designing the policies
to be interactive when needed, and by integrating some
of the data mining techniques described in the previous
section, we believe ArchTrace can be turned into a
highly effective and practical solution for maintaining
accurate traceability among an evolving architecture
and its evolving code base.

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

An additional issue that we would like to address
is branching. Our current policies do not quite handle
this correctly. While architectural branches are handled
correctly, at the source code level some side effects
take place (inadvertent removal of “older” links). We
plan on implementing a workaround for this problem in
the form of a pre-trace policy that denies removal of
traceability links to source code for which a new link to
a branch is added.

8. Acknowledgments

This work is sponsored in part by NSF grants
CCR-0093489 and IIS-0205724, and CAPES grant
BEX0323/04-7. We wish to thank the students at UC
Irvine and COPPE/UFRJ for their contributions.

References

[1] M. Abi-Antoun, et al., "Semi-Automated Incremental

Synchronization between Conceptual and Implementa-
tion Level Architectures", WICSA, Pittsburgh, PA, No-
vember, 2005.

[2] J. Aldrich, C. Chambers, and D. Notkin, "ArchJava:
Connecting Software Architecture to Implementation",
International Conference on Software Engineering, pp.
187-197, Orlando, USA, May, 2002.

[3] K. M. Anderson, R. N. Taylor, and E. J. Whitehead,
"Chimera: hypertext for heterogeneous software envi-
ronments", Conference on Hypertext and Hypermedia,
pp. 94 -107, Edinburgh, Scotland, September, 1994.

[4] G. Antoniol, et al., "Recovering Traceability Links
between Code and Documentation", IEEE Transactions
on Software Engineering, vol. 28, n. 10, pp. 970-983,
October, 2002.

[5] R. Baeza-Yates and B. Ribeiro-Neto, Modern Informa-
tion Retrieval, ACM Press, 1999.

[6] J. Bosch, Design and Use of Software Architectures:
Adopting and Evolving a Product-Line Approach, Addi-
son Wesley, 2000.

[7] L. C. Briand, Y. Labiche, and L. O'Sullivan, "Impact
Analysis and Change Management of UML Models", In-
ternational Conference on Software Maintenance, pp.
256-265, Amsterdam, Netherlands, September, 2003.

[8] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato,
Version Control with Subversion, O'Reilly, 2004.

[9] R. Conradi and B. Westfechtel, "Version Models for
Software Configuration Management", ACM Computing
Surveys, ACM Press, vol. 30, n. 2, pp. 232-282, June,
1998.

[10] E. Dashofy, A. Hoek, and R. N. Taylor, "A Highly-
Extensible, XML-Based Architecture Description Lan-
guage", Working IEEE/IFIP Conference on Software
Architectures, pp. 103-112, Amsterdam, Netherlands,
August, 2001.

[11] A. De Lucia, et al., "Enhancing an Artefact Management
System with Traceability Recovery Features", Interna-

tional Conference on Software Maintenance, pp. 306-
315, Chicago, Illinois, September, 2004.

[12] IEEE, "Std 1471 - IEEE Recommended Practice for
Architectural Description of Software-Intensive Sys-
tems", Institute of Electrical and Electronics Engineers,
2000.

[13] A. Marcus and J. I. Maletic, "Recovering Documenta-
tion-to-Source-Code Traceability Links using Latent
Semantic Indexing", International Conference on Soft-
ware Engineering, pp. 125-135, Portland, Oregon, USA,
2003.

[14] L. G. P. Murta, A. van der Hoek, and C. M. L. Werner,
"ArchTrace: A Tool for Keeping in Sync Architecture
and its Implementation", Brazilian Symposium on Soft-
ware Engineering (SBES), Tools Session, Florianópolis,
Brazil, October, 2006.

[15] C. Nentwich, et al., "Flexible Consistency Checking",
ACM Transactions on Software Engineering and Meth-
odology, ACM Press, vol. 12, n. 1, pp. 28-63, January,
2003.

[16] T. N. Nguyen, E. V. Munson, and J. T. Boyland, "The
molhado hypertext versioning system", Conference on
Hypertext and Hypermedia, pp. 185-194, Santa Cruz,
USA, August, 2004.

[17] R. v. Ommering, et al., "The Koala Component Model
for Consumer Electronics Software", IEEE Computer,
vol. 33, n. 6, pp. 78-85, March, 2000.

[18] P. Oreizy, N. Medvidovic, and R. N. Taylor, "Architec-
ture-Based Runtime Software Evolution", International
Conference on Software Engineering (ICSE), pp. 177-
186, 1998.

[19] S. P. Reiss, "Constraining Software Evolution", Interna-
tional Conference on Software Maintenance (ICSM),
IEEE Press, pp. 162-171, Montreal, Canada, October,
2002.

[20] D. J. Richardson and A. L. Wolf, "Software Testing at
the Architectural Level", International Software Archi-
tecture Workshop (ISAW), pp. 68-71, San Francisco,
USA, October, 1996.

[21] J. S. Shirabad, T. Lethbridge, and S. Matwin, "Support-
ing Software Maintenance by Mining Software Update
Records", International Conference on Software Main-
tenance, pp. 22-31, Florence, Italy, November, 2001.

[22] C. Walls and N. Richards, XDoclet in Action, Manning
Publications, 2003.

[23] C. M. L. Werner, et al., "OdysseyShare: an Environment
for Collaborative Component-Based Development",
IEEE Conference on Information Reuse and Integration,
pp. 61-68, Las Vegas, USA, October, 2003.

[24] A. T. T. Ying, et al., "Predicting Source Code Changes
by Mining Change History", IEEE Transactions of
Software Engineering, vol. 30, n. 9, pp. 574-586, Sep-
tember, 2004.

[25] J. Zhao, et al., "Change impact analysis to support archi-
tectural evolution", Journal of Software Maintenance:
Research and Practice, John Wiley & Sons, Inc., vol.
14, n. 5, pp. 317-333, New York, USA, September,
2002.

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

