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Abstract

Program checking technology is now a mature technol-
ogy, but is not yet used on a large scale. We identify one
cause of this gap in the decoupling of checking tools from
the everyday development tools. To radically change the
situation, we explore the integration of simple user-defined
checks into the core of every development process: the com-
piler. The checks we implement express constrained reach-
ability queries in the control flow graph taking the form
“from x to y avoiding z”, where x, y, and z are native
code patterns containing a blend of syntactic, semantic and
dataflow information. Compiler integration enables contin-
uous checking throughout development, but also a perva-
sive propagation of checking technology. This integration
poses some interesting challenges, but opens up new per-
spectives. Factorizing analyses between checking and com-
piling improves both the efficiency and the expressiveness
of the checks. Minimalist user properties and language-
independent code pattern matching ensure that our ap-
proach can be integrated almost for free in any compiler
for any language. We illustrate this approach with a full-
fledged checking compiler for C. We demonstrate the need
for permanent checking by partially analyzing two different
releases of the Linux kernel.

1. Introduction

Checking programs with respect to user-specified prop-
erties is an important aspect of automated software engi-
neering. Recent years have seen many advances in software
checking materialized in the apparition of many different
checking tools performing various levels of checks, rang-
ing from purely syntax checks [7, 29, 1, 20, 13, 11], going
through lightweight model checking [18, 28, 10, 14, 3, 8,
24, 19] up to sound software model checking [12, 4, 21].
Despite this apparently very encouraging trend, the use of
these tools in everyday software practice is still marginal.
Face to this situation, a legitimate question is: why?

There are several possible reasons of this discrepancy,

among which:

• efficiency: most of the tools are not fast enough for ev-
eryday use. This is especially the case for more formal
verifiers.

• usability: the learning curve might be too long for
some tools; some other tools are not sufficiently easy
to use even for trained users

• integration: most of these tools are not integrated with
familiar development tools

As a consequence of these and maybe other reasons,
checking tools are not used at all in most software projects.
At best, checking is performed sporadically. However, oc-
casional checking has two major shortcomings. Firstly, er-
rors are not instantly caught, meaning that they may be
found in later stages when fixing them is more expensive.
Secondly, errors that were fixed in some phase of the project
may be re-introduced.

This paper explores a pragmatic approach to code check-
ing aiming to incorporate some minimal amount of check-
ing throughout the development process. Our approach to
permanent checking is based on extending the central tool
of the development process, the compiler, with user-defined
properties that are checked in addition to compilation.

Achieving integration of user-defined checks within a
compiler requires a new balance between power and pre-
cision on one hand versus speed and usability on the other
hand. We propose here to favor speed and usability based
on a minimalist class of user-defined properties, trivial to
define by any programmer and checkable very efficiently,
yet covering many well-known checks on systems code.
The checks we propose are simply expressed as reachability
queries in the control flow graph, constrained by syntactic,
semantic, and dataflow information.

Our approach aims specifically to be easy to integrate in
existing compilers, in order to allow a really widespread use
of checking technology by every programmer. To achieve
this portability goal, we use a language-independent pat-
tern matching technique that can be implemented very con-
cisely in virtually any compiler. We practically demonstrate
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this point by presenting a full-fledged prototype of check-
ing compiler built as a customizable version of the popu-
lar gcc compiler, and called mygcc. This prototype checks
and compiles full C while adding only about 1000 lines of
C source code to the gcc compiler. First performance mea-
sures indicate that the overhead of checking does not exceed
compilation time even on rather complex checks, and may
be as small as 15% for basic checks. Thus, it now becomes
possible to integrate checking at every compilation.

Based on this concrete base, we were able to estimate
the potential benefits of compiler-integrated checking on the
maintenance of a significant code base — part of the Linux
kernel. This experiment shows that some limitations of the
sporadic checking approach can be overcome using perma-
nent checking.

The main contributions of this paper can be summarized
as follows:

1. we present an approach to closely integrate checking
and compiling, and we illustrate it with a full-fledged
compiler (mygcc) able to check user-defined proper-
ties in addition to usual compilation

2. we discuss some difficulties of implementing the inte-
grated approach and give solutions to these problems

3. based on the integration of our approach, we intro-
duce the concept of permanent code checking during
the whole development process, and demonstrate its
usefulness on a real example

4. our approach is specially designed to be incorpo-
rated with little effort in any compiler; in particu-
lar, our checking technology is completely language-
independent.

The rest of this paper is organized as follows. Sec-
tion 2 presents the approach of compiler-integrated check-
ing. Section 3 discusses implementation issues. Section
4 presents the permanent checking approach enabled by
compiler-integrated checking. Section 5 discusses related
work, and Section 6 concludes.

2. Compiler-integrated checking

Existing tools for user-defined program checking use
various approaches, but share a common, apparently minor
design choice: they are specialized tools, doing only pro-
gram checking. There are several important consequences
of this design:

• most of the tools are completely decoupled from exist-
ing development environments

• they duplicate a considerable amount of work on pro-
gram parsing and analysis; this is true even for tools

that achieve a superficial level of integration by being
called automatically from existing IDEs or makefiles

• they afford to perform costly analyses, which make
them unsuitable for daily use throughout development;
at best, existing tools aim only at scalable analyses

• last but not least, the vast majority of programmers
completely ignore their existence.

We propose to explore the challenge of integrating user-
defined checks into the tool which constitutes the core of ev-
ery development process: the compiler. The goal is not just
to build one experimental checking compiler, but to define
a methodology to integrate user checking into any existing
compiler.

This design decision solves the above problems, and
should allow a really widespread use of program checking,
in order to deliver a small yet useful part of present checking
technology to every programmer.

However, this design decision is indeed a challenge to
put into practice, because it imposes a number of severe
constraints on the implementation:

• checking should be really fast, which means not only
scalable, but comparable to compilation time

• the interface should be smoothly integrated into the
compiler interface, and trivial to use; ideally, the user
should express many useful checks using only a few
compiler options

• the implementation should not contain complex tools
such as theorem provers, expression simplifiers, or
complex language interpreters, so that compiler imple-
mentors could practically accept it.

In order to fulfill the above constraints, the present ap-
proach chooses a new balance between checking power and
precision on one hand, versus speed and usability on the
other hand. This new balance is achieved by a minimal-
ist interface consisting of constrained reachability queries,
able to express a small class of user properties, checkable in
linear time, but covering nevertheless many useful checks.

Furthermore, to ensure widespread adoption of the
methodology into any compiler, the implementation should
be easily ported to any language without the need to develop
complex language-specific front-ends; ideally, the whole
implementation should be completely language indepen-
dent. These language-independence is achieved by a mini-
malist implementation of pattern matching, using unparsed
patterns.

2.1. Minimalist pattern matching

Traditionally, source code pattern matching has been re-
duced to tree matching, following two different approaches.
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According to the first approach, patterns are expressed
directly as ASTs, so that any algorithm for tree matching
can be used to match them with the program AST. This ap-
proach is simple to implement, but writing patterns in AST
form requires the user to be aware of both the AST repre-
sentation of programs and a specific textual notation for it.

According to the second approach, patterns are ex-
pressed directly in the concrete syntax of the programing
language extended to contain pattern variables (also called
meta-variables to distinguish them from the variables of
the underlying programming language). Writing patterns
in concrete syntax is trivial for any programmer, but this
approach is difficult to implement, because it requires to
build a pattern parser. The pattern parser must implement an
extended version of the programming language’s grammar.
Extending the grammar of a real programming language to
allow for pattern variables is a difficult task, because it in-
troduces shift/reduce conflicts, which are usually difficult to
solve. As a result, pattern parsers usually implement a lim-
ited pattern grammar, allowing meta-variables to occur only
in certain positions.

Thus, abstract syntax patterns are easy to implement but
difficult to use, while concrete syntax patterns are easy to
use but difficult to implement. To solve this apparent con-
tradiction without sacrificing any of the terms, we designed
a new technique of pattern matching based on unparsed pat-
terns.

Unparsed patterns are program fragments written in the
concrete syntax of a programming language where meta-
variables may replace any construct that is represented as
a subtree in the AST. However, unparsed patterns can be
matched with ASTs without being parsed at all [32]. The
key insight behind unparsed pattern matching is that when
matching a program AST with a pattern represented as a
string, there is enough structure information in the AST so
that the pattern needs not be parsed. In fact, the pattern
matching algorithm works by unparsing the AST to com-
pare it with the pattern, rather than parsing the pattern.

By avoiding to implement a pattern parser, unparsed pat-
tern matching is completely language-independent, except
the part that unparses an AST. However unparsers for any
language can be generated automatically bases on the gram-
mar of the language. Moreover, most compiler already in-
clude an unparser for debugging purposes. As a result, un-
parsed pattern matching can be implemented almost for free
in any compiler.

2.2. Minimalist interface

Syntax. By allowing meta-variables to stand for any sub-
tree in the AST, unparsed patterns provide a powerful tool to
express syntax information in user-defined properties. This
is already sufficient to define a large class of properties re-

lated to code inspection. To go beyond that, we need to
integrate control-flow information in our interface.

Control flow. It is well known that many dataflow anal-
yses and program checks can be expressed as reachability
queries over an “exploded program graph”, which is the
product of the program CFG and another graph (a value-
flow graph, or an automaton, for instance).

Integrating control-flow in our minimalist interface is
based on the observation that many sequencing properties
that were successfully used in the literature to find bugs in
real code can be expressed as one or several instances of
simple reachability queries directly on the program CFG.
This form of simple reachability problems, that may be
called “constrained reachability queries” have the form: “Is
there a path from a statement p1 to a statement p2 avoiding
statements p3?”. In this questions, p1, p2, and p3 are code
patterns that define classes of program statements.

For example, looking for memory leaks can be expressed
as “Is there a path from a malloc(x) statement to the exit
node passing only through statements other than free(x)?”.
The exit node may be either any return statement when
checking intra-procedurally, or return statements from the
main function, when checking inter-procedurally.

Similarly, many other common checks may be expressed
as constrained reachability queries. For instance:

• reading a closed file: from close(f) to read(f, ) avoid-
ing f=open( , ) (where “ ” is the pattern matching any-
thing)

• double lock: from lock(x) to lock(x) avoiding unlock(x)

• blocking operation with interrupts disabled: from dis-
able interrupts() to blocking function() avoiding en-
able interrupts()

Data flow. Using reachability in the CFG and unparsed
patterns, an unexpected number of useful checks can be en-
coded. However, the properties thus defined lack any infor-
mation on the values of program variables.

To give a concrete feeling of this limitation, let us con-
sider a check for potential null dereferences of dynamically
allocated pointers. This check can in principle be expressed
as a reachability query: “Is there a path from x=malloc() to
*x avoiding if(x!=0)?”. However, as it is written, the reach-
ability query ignores the outcome of the test. However, only
paths going through the “else” branch could contain poten-
tial null dereferences.

In order to take into account the result of the test, the
query should avoid only successful tests matching the pat-
tern x!=0. That is, the query has to be written more pre-
cisely as: “from x=malloc() to *x avoiding successful tests
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x!=0 and unsuccessful tests x==0”. This way, dataflow in-
formation can be integrated very naturally in our minimalist
interface.

Semantics. Semantic information can be easily added by
complementing patterns with calls to executable functions
internal to the compiler. For instance, the following pattern
matches statements that allocate not enough space for the
destination variable or expression:
x = malloc(y) | {const(y) && val(y) < size(type(x))}

By calling other internal functions of the compiler,
any information computed by any analysis or optimization
pass (on the AST level) can be reused by the checking
phase, thereby taking immediate advantage of the compiler-
integrated approach.

Mixing all together. A constrained reachability query
(CRQ) is a query of the form: “Is there a path from a state-
ment p1 to a statement p2 avoiding: statements p3, success-
ful tests p4 and unsuccessful tests p5?”. A CRQ can thus be
expressed as a tuple of five patterns 〈p1, p2, p3, p4, p5〉. We
sometimes refer to the patterns according to their role in the
CRQ as: the “from” pattern, the “to” pattern, the “avoid”
pattern, the “avoid-then” pattern and the “avoid-else” pat-
tern.

Of course, some patterns can be omitted in a CRQ, to
express plain reachability or even purely syntactic queries:

• integer division: [is there a path] from int x; to x/ ? The
“avoid” patterns missing altogether, we have a pure (or
unconstrained) reachability query.

• undefined side-effect constructs: [is there a path] from
x[i++]=y[i++] [to anywhere]? As the “to” patterns is
missing, this represents a purely syntactic query look-
ing for statements matching the pattern.

Thus, the “to” patterns defaults to the “ ” pattern match-
ing anything, while the “avoid”, “avoid-then”, and “avoid-
else” patterns default to ε, the empty pattern matching noth-
ing. The “from” pattern cannot be omitted.

This minimalist user interface has the following advan-
tages:

• a large number of useful checks can be expressed

• checks are encoded very compactly, grouping together
syntactic, semantic, control flow and data flow infor-
mation

• checks are expressed very naturally from a program-
mer’s point of view

• user properties expressed as CRQs can be checked in
linear time and space, as showed below.

2.3. Checking CRQs

It is known that if meta-variables can be instantiated in
negative patterns (such that the “avoid” patterns), the run-
ning time of path queries strictly increases [23]. As we
strive for a class of properties checkable at compilation with
an acceptable overhead, we restrict queries so that all the
meta-variables must occur in the “from” pattern. This guar-
antees that all meta-variables are instantiated at the begin-
ning of each path satisfying a query. Then, it is possible to
check a CRQ by first instantiating the “from” patterns in a
global store and then performing a traversal of the instan-
tiated CFG. The following algorithm checks a CRQ on a
CFG:

proc check(CFG, from, to, avoid, avoid then, avoid else)
substs ← ∅ // collect CRQ instances
foreach node t ∈ CFG do

global store ← ∅ // empty substitution
match(t, from) // instantiating global store
substs ← substs ∪ {global store}

end
for subst ∈ substs do // check one CRQ instance

global store ← subst // instantiate variables
list ← []
foreach node t ∈ CFG do

// put “from” nodes of the instance on the list
if match(t, from) then list ← [t | list] fi

end
// traverse instantiated CFG
while list = [t | rest] do

list ← rest
if ¬visited(t)

visited(t) ← true
if match(t, to)

print “reached t”
elsif ¬match(t, avoid)

foreach edge e = t → t′ do
if unconditional edge(e)∨

is then(e) ∧ ¬match(t, avoid then)∨
is else(e) ∧ ¬match(t, avoid else)
then list ← [t′ | list]

fi
end

fi
end

end
end

In a first traversal, the algorithm scans all the program
for “from” statements, and collects the number of differ-
ent substitutions associated to them. Each such substitution
represents an instance of the CRQ, which is then checked in

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00  © 2006



two subsequent passes. The first pass over a CRQ instance
collects all “from” nodes satisfying the current substitution.
These constitute the initial work list for the second pass over
the CRQ instance, which traverses the CFG from “from”
nodes to “to” nodes visiting only nodes not satisfying the
“avoid” patterns and taking only edges not eliminated by
the “avoid-then” and “avoid-else” patterns. For any “to”
node that is reached, there exists a path satisfying the CRQ.

The space used by the algorithm is the work list whose
length is at worst the number of edges, plus one bit per
CFG node to recognize already visited nodes, plus a global
store for pattern variables, recording their substitution for
the current instance of the CRQ. To compute the set of all
instances of a CRQ during the first traversal of the algo-
rithm, a set of global stores is needed. Therefore, the space
is O(CFG+CRQ).

As each graph traversal is linear in the size of the
CFG, checking one instance of a CRQ is O(CFG). The
running time for checking all the instances of a CRQ is
O(substs*CFG), where substs is the number of CRQ in-
stances.

3. Implementation

When implementing the compiler-integrated approach
into a concrete compiler, we encountered some interesting
challenges, described below.

We entirely implemented the approach described in the
previous section in a prototype called mygcc built by inte-
grating into the open-source gcc compiler the above check-
ing (in its intra-procedural version only) and pattern match-
ing algorithms. Mygcc is not just a checker, it is a fully
functional gcc version that performs checking as an addi-
tional compiler pass. In terms of user interface, Mygcc just
adds a new gcc flag “–tree-checks=file” to specify a file con-
taining CRQ definitions to be checked while compiling the
given programs.

Due to our minimalist approach, mygcc implementation
consists of only about 250 lines of modifications to existing
gcc code, plus about 1000 lines of added C code, among
which 600 lines implement the pattern matcher and 400
lines implement the checking engine. Mygcc is freely avail-
able both as a gcc patch and as a standalone executable
[27], and we are currently working with the gcc develop-
ment team to incorporate the corresponding source changes
into an upcoming gcc release.

Why gcc? We chose gcc as our base because we wanted
to demonstrate that the compiler-integrated approach can be
easily incorporated into any existing compiler. This is why
we eliminated from the start the idea of using a research-
oriented open compiler that would have eased the task by
already providing some infrastructure for extensibility and

cutting-edge program analyses. As opposed to this open
architecture, gcc was not meant to be extensible with user
checks, and implements rather well-established analyses.

Some very important advantages of gcc are its large user
base and its multiple language frond-ends for C, C++, Java,
etc. By choosing gcc, we hope proving that user-defined
checks can be adopted in any project, for any programming
language.

3.1 Choosing the intermediate represen-
tation

The first implementation choice that we faced was that
gcc has no less than four internal representations for the
code. First, there are language-specific ASTs in the front-
ends (C, C++, Java...). Second, these ASTs are translated by
each front-end to a language-independent tree representa-
tion called GENERIC. Third, GENERIC tree are simplified
to a subset of GENERIC called GIMPLE [26], that keeps
some high-level information about the code (lexical scopes,
control constructs such as if-then-else) but factorizes most
of the syntactic variations (e.g., loops are translated into go-
tos). Fourth, GIMPLE is translated to a register transfer
language called RTL.

Given the high-level patterns specified in user properties,
the easiest choice would have been to implement checking
on the first representation: language-dependent ASTs. We
chose not to do so, because we aimed at a tight integra-
tion between checking and compiler analyses and transfor-
mations. Or, in order to factorize analysis code between
different front-ends, most of the other high-level analysis
(building of the CFG, aliases, use-defs) and high-level opti-
mizations (tail recursion elimination, constant propagation,
strength reduction, etc) are performed on GIMPLE. There-
fore, to take the best advantage of being inside the compiler,
we chose to implement checking on the GIMPLE represen-
tation. Another very important advantage of choosing GIM-
PLE is that the implemented checking can then be used on
any language parsed by gcc’s front-ends — provided that
enough information is maintained to reconstitute the origi-
nal syntax, for pattern matching purposes.

However, choosing GIMPLE significantly augments the
complexity of matching high-level user patterns with de-
sugared code.

A first slight complication is that the GIMPLE repre-
sentation introduces many explicit casts not present in the
source. We easily adapted pattern matching so as to ignore
any casts in the AST. One consequence of this is that user
patterns must not include any explicit casting.

A more serious difficulty when matching user-level pat-
terns with GIMPLE code comes from the fact that ex-
pressions are broken down in GIMPLE to a three-address
form, using temporary variables to store intermediate val-
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ues. However, any use of a temporary has a previous defini-
tion in the same sequence of straight-line code. Thus, from
any GIMPLE expression one can reconstitute the corre-
sponding expression in the original program by recursively
inlining the definitions of temporaries over uses. Therefore,
we adapted the pattern matching mechanism such that when
encountering a temporary variable use in the matched code
to conceptually inline its definition before continuing the
matching process.

3.2 Matching lvalues

However, inlining temporaries does not solve by itself
the whole problem of matching high-level patterns with
simplified code. Consider the following code fragment,
which represents a downsized version of a real bug in the
Linux kernel:

ps->t->table = malloc(sizeof(pixmap));
memcpy(ps->t->table,

pixmap, sizeof(pixmap));

This fragment contains a possible null pointer deref-
erence: the allocated pointer expression “ps->t->table” is
passed unchecked to the memcpy() function that uses this
pointer as the destination of a copy. However, when the
checking algorithm is performed on the GIMPLE form to
verify the CRQ “from x =malloc( ) to memcpy(x, , ) avoid
x= avoid-then x!=0 avoid-else x==0”, the code fragment
has been rewritten as follows:

1. D.2208 = ps->t;
2. D.2209 = malloc (40);
3. D.2210 = (char *) D.2209;
4. D.2208->table = D.2210;
5. D.2208 = ps->t;
6. D.2211 = D.2208->table;
7. memcpy (D.2211, &pixmap, 40);

In the above GIMPLE form, the destination of the mal-
loc() call is a temporary variable (D.2209) that does not oc-
cur at all in the memcpy() call, even when inlining the defi-
nition of temporary D.2211.

In fact, the pointer expression “ps->t->table” that was
shared in the original program between the calls to malloc()
and memcpy() can be found as the LHS of line 4. It is pre-
cisely this expression that should be caught by the pattern
variable x, rather than the temporary D.2209.

The key observation here is that a GIMPLE temporary
definition never represents a definition in the original pro-
gram, but always represents a use in the original program.
Definitions in the original program are always translated in
GIMPLE as assignments to a non-temporary. Thus, by ap-
plying inlining of temporary uses to every statement that is

not a temporary definition, one can reconstitute all the state-
ments in the original program. In our example, the original
assignment involving malloc() can be reconstituted from the
definition on line 4, the only non-temporary definition.

Therefore, we adapted the matching algorithm to skip
temporary definitions when looking for user-defined state-
ment patterns.

3.3 Binding context

There is another interaction between temporary variables
and patterns, which comes from the fact that temporary vari-
ables only have meaning when associated with the state-
ment where they occur. When a temporary is bound to
a pattern variable x, the binding should include not only
the temporary, but also the context statement where it was
bound. Thus, when the same pattern variable x is subse-
quently used in another pattern for matching another state-
ment, inlining the temporary bound to x must be done with
respect to its binding context, and not with respect to the
current statement. To implement this mechanism, the global
store includes for every pattern variable both its value and
its binding context.

4 Permanent checking

The compiler-integrated approach, as implemented in
mygcc, makes it possible to perform permanent checking
during all the development process. This technique was not
possible using previous checking tools.

In order to assess and validate our approach, we applied
mygcc to reproduce the detection of some previously re-
ported bugs in the Linux kernel [9]. That previous study
applied 12 different user-defined checkers written in Metal
for the MC tool to detect over 500 bugs in kernel version
2.4.1. All these bugs were manually inspected and/or con-
firmed by kernel developers. A summary of the MC results
is freely accessible as an on-line database [25]. As MC is
a basically intra-procedural tool, this study proved that it is
indeed worth to carefully check intra-procedural properties
in real system software. This also meant that even our cur-
rent implementation of mygcc could have a real potential
usefulness.

Using this excellent and well-established testbed, our ap-
proach had to be validated in several respects: expressive-
ness, precision, usefulness, scalability, and performance.

To assess the expressiveness of our properties, we ex-
pressed as CRQs as much as possible of the 12 MC checkers
cited above. Out of these 12 checkers, 11 can be expressed
partially or completely as CRQs: 9 using only syntactic
patterns and 2 checkers using semantic patterns. Thus, a
single checker cannot be expressed conveniently as a CRQ
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because it encodes complex checks about pointer uses and
makes deductions based on these uses.

To test the precision of mygcc, we chose 95 source files
in the kernel that contained 134 bugs detected by three dif-
ferent Metal checkers: the “NULL” checker, looking for
possible null pointer de-references, the “FREE” checker,
looking for uses of freed pointers, and the “LOCK” checker,
detecting calls to blocking functions with interrupts dis-
abled or while holding a spin lock. We rewrote these Metal
checkers as CRQs, and we tried to reproduce as much as
possible of the bugs that were reported by them. Mygcc suc-
cessfully found 130 NULL bugs out of the 134 bugs found
by MC. In spite of its minimal interface and implementa-
tion, mygcc missed only four NULL bugs and generated
only two additional false positives. Among the bugs found
by both MC and mygcc, two were diagnosed slightly differ-
ently. On the other hand, mygcc found four new bugs, not
previously reported.

4.1 Need for permanent checking

In order to estimate the usefulness of permanent check-
ing, we verified whether all the bugs reported by the MC
study have been fixed in a recent kernel version, v. 2.6.13,
released in August 2005. The results on kernel 2.4.1 were
published in 2001 and Linux kernel developers were in-
formed about the existing on-line database summarizing the
bugs. Therefore, this experiment covers a lapse of 4 years
of active maintenance of a significant code base.

When re-conducting the checks described in the previ-
ous subsection on the new kernel version, mygcc found four
surviving bugs:

• one of the 4 new bugs mentioned above (in file an-
ode.c, function hpfs add sector to btree) has survived
identically; the containing function has only slightly
changed in the mean time; interestingly, the other 3
previously unreported bugs have disappeared

• one bug (in file skfddi.c, function skfp driver init) has
survived identically; the function has only slightly
changed in the mean time

• one bug (in file riotable.c, function RIOReMapPorts)
remained untouched, in spite of the fact that this func-
tion has been significantly changed for other reasons

• one bug (in file inode.c function bfs read super) sur-
vived in a different form; the code has radically
changed between the two versions: the containing
function does not exist anymore, but a code fragment
similar to the old bug can be found now in another
function (bfs fill super)

File Checkers Time Overhead
(secs) (%)

inode.c none 0.291
NULL 0.503 72
all 0.506 74

comx-proto-fr.c none 0.626
FREE 0.715 14
NULL 0.929 48
all 0.989 58

iphase.c none 2.026
FREE 2.242 11
LOCK 2.309 14
NULL 3.644 80
all 4.013 98

Table 1. Performance of mygcc.

The fact that almost all the bugs were fixed in the new
version clearly shows that the MC report was taken very se-
riously into account by Linux kernel developers. The three
previously reported bugs that survived in spite of this in-
tense correction effort demonstrate that without a proper
tool to enforce user properties, even well-known bugs can
survive for long periods of time (four years in our case), or
can be re-introduced during maintenance.

4.2 Performance

The examples described in the Linux study illustrate the
fact that mygcc is able to check any program that gcc can
compile. Thus, the scalability of the prototype to real pro-
grams is clearly demonstrated. But mygcc aims not just at
being scalable to large programs, but to impose a reasonable
overhead on compilation time.

We measured the overhead of different checkers when
compiling three programs that are part of the above Linux
study: a program featuring only NULL bugs, one with ad-
ditional FREE bugs, and a last one with the three types of
bugs we checked for. The results are summarized in Table 1.

The benchmarks were performed on a Linux PC with an
Athlon XP2800+ processor and 256MB of memory.

The checking overhead is directly related to the number
of checkers used, to the number of CRQ instances found
in the program, and to the size of the patterns. This ex-
plains the large variations between the different measuring
points. However, it can be seen that checking time never
exceeds compilation time in these typical examples of the
Linux study. Overheads are of the order of 10-15% for
a very simple checker (FREE, containing a total of 6 pat-
terns), 15% for a moderate checker (LOCK, including 11
patterns), and 50-80% for a complex checker (NULL, in-
cluding a total of 51 patterns, among which 24 are disjuncts
of a single “from” pattern). The maximum overhead when
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combining all the checkers is 98%.
When interpreting the figures, it is important to note that

we did not have the time to optimize the implementation
of the current prototype. To give only one example, mygcc
internally uses pattern matching to decide whether a node
is an assignment; while this self-application is elegant, this
check could be optimized to check the AST node label.

5 Related work

The most common approach to user-defined checking is
to define a programming model in which users may write
their own program inspection passes. Tools implementing
this approach incorporate a front-end that parses the pro-
gram in the form of an AST and offer either a applica-
tion programming interface (API) or a domain-specific pro-
gramming language (DSL) to walk the AST and implement
different forms of checks.

API-based code inspectors include SoftBench CodeAd-
visor from HP, or Checkstyle [7], in which user-defined
checks have to be coded in C++, respectively in Java. More
recently, some extensible code inspectors such as PMD [29]
build an XML representation of the AST, on which user-
defined checks can be expressed either in JAVA, or in a
declarative way using Xpath patterns. API-based tools al-
low in theory to implement any user-defined checks. They
offer a solid basis to inspect syntax, but little or no seman-
tic information is pre-computed. None of these tools pre-
compute the control-flow graph, therefore no dataflow in-
formation is available. For these reasons, API-based code
inspectors make it easy to define syntax checks such as ad-
herence to a coding standard, or computations based on syn-
tax traversal such as function call graphs or class hierarchy
extraction. In turn, writing any kind of non-local semantic
checks such as verifying sequences of operations or per-
forming model checking requires a significant amount of
code.

Tools defining a DSL to write code checkers include
CodeCheck [1], tawk [20], defining an imperative language
close to C, Genoa [13] defining a functional language close
to Lisp, and ASTLOG [11], defining a variant of the Pro-
log language. DSL-based tools can very compactly encode
sophisticated tree patterns or tree traversals, but none of the
cited DSLs integrate control or dataflow information in the
language, neither in explicit nor implicit form.

Writing checkers for both API and DSL code inspectors
requires the user to be aware of the details of the AST rep-
resentation for the subject language, in addition to the API
or DSL to traverse it.

Another set of program checkers such as Splint [16, 30]
and CQUAL [17] are based on extensible type checking. In
this approach users must annotate the types of the program-
ing with qualifiers in order to express new classes of pro-

gram properties that can be checked automatically. Type-
based checkers are very efficient (e.g., linear-time) and pre-
cise (e.g., sound) in verifying “global” properties in a pro-
gram, i.e., that do not depend on control flow. Some of
these checks could definitely be integrated in a compiler-
integrated approach, but for now are implemented as stan-
dalone tools. Some extensions were added to check flow-
sensitive types [18], but in this case the performance is no
more suitable for permanent checking.

Yet another class of extensible checkers transpose model
checking techniques, used since a long time in hardware
verification, to programs, viewed simply as CFGs, in which
the semantics of individual program statements is usually
ignored. In this approach of lightweight model checking,
user-defined properties represent legal sequences of opera-
tions, and are represented by finite automata. Transitions
are triggered by syntactic patterns matching program state-
ments. Checking is done by conceptually executing the
automata along the CFG. Lightweight model checkers in-
clude Cesar [28] for checking Fortran and his evolution
called FLAVERS [10] for Ada and Java, MC [14] for C
and its variant MJ [3] for Java, MOPS [8] for C, PQL [24]
for Java and CodeSurfer Path Inspector [19] for C. Engler
et al. clearly demonstrated the practical usefulness of the
lightweight model checking approach, by applying MC to
detect hundreds of system programming bugs [15] and se-
curity bugs [2] in C code. The running time complexity
of these tools has been precisely analyzed in the frame-
work of parametric regular path queries [23]. Essentially,
the checking time depends on the size of the user automa-
ton. For simple automata, checking may be done in linear
time. In fact, the checks allowed by our tool are a particu-
lar case of lightweight model checks where the automaton
has a fixed form with only three states: the initial state, the
state after a “from” node, and the error state. One original
feature of mygcc it allowing to define transitions that de-
pend on variable values, using the “avoid-then” and “avoid-
else” patterns. More importantly, all cited tools are distinct
from the compiler, and therefore duplicate a great amount
of analysis work. Note also that our unrestricted, language-
independent pattern matching could be useful in many of
these tools.

More precise program checkers take into account vari-
able values in order to distinguish between feasible and un-
feasible path. Among them, SLAM [4], Blast [21], and ESP
[12] also express user properties as automata. The BLAST
checking algorithm has been integrated within an existing
IDE as an Eclipse plug-in and optimized to work incremen-
tally, in order to support “Extreme model checking” [22],
which consists of performing user checks on each release
of a program, during software development. These tools
integrate complex subsystems such as symbolic executors,
theorem provers and/or expression simplifiers, that cannot
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reasonably be integrated within compilers. This means that
they are designed to remain standalone tools, used out of
the critical path in development. Our approach for perma-
nent checking is complementary to extreme model check-
ing, as it chooses to perform simpler checks but that can
be integrated easily in every compiler and re-done at every
compilation.

Finally, full software model checkers, such as, for ex-
ample Java PathFinder [31], verify user-defined properties
(possibly defined as automata) on non-deterministic pro-
grams by trying to execute all possible sequences of non-
deterministic choices. The applicability of this approach
is usually limited to medium-sized systems because of the
state space explosion problem. This remains true even if ex-
isting tools achieve great savings by using complex search
space strategies, by reducing the number of states explored,
and by reducing the state storage cost.

A quite different approach to program checking is to ex-
press used-defined properties as so-called contracts associ-
ated to interfaces, and consisting in predicates to be checked
before and after function calls. Thus, JML [6] extends Java
with contracts expressed as stylized comments, and Spec#
[5] extends C# with contracts integrated in the base lan-
guage. In both of these systems, user properties cover a
restricted set of first-order logic, and may be checked ei-
ther statically or dynamically. Similar to our approach, user
properties are handled by an extended compiler. More-
over, some of the properties mentioned in this paper can
be re-phrased as function contracts. One major distinction
is that contracts are tied in these systems to pre- and post-
conditions around function (or method) calls, while mygcc
can check properties on every program construct, using pat-
tern matching — not only on function calls. Besides, con-
tract properties cannot directly refer to the control flow,
which is a very natural way to express some properties. On
the other hand, Spec# defines non-null types that are stati-
cally checked, which allows to protect against null pointer
de-references. These types are similar to CQUAL’s type
qualifiers, discussed above.

6 Conclusion

We presented a pragmatic approach for easily extending
existing compilers with user-defined checks, very simple to
express and very efficiently checked. The practical appli-
cability of the approach is demonstrated by its very concise
implementation in the gcc compiler.

The fusion between checking and compiling enables a
software development method in which checking perma-
nently accompanies evolution, from the early coding phase
to the maintenance phase. It also considerably increases ef-
ficiency by eliminating a lot of duplicated analyses.

Beyond these immediate advantages, the fusion between

the checker and the compiler opens up new perspectives for:

• Integrating specifications within library interfaces,
with no language extension: each interface file could
be complemented by a separate check file describing
sequencing constraints.

• Integrating specifications within the program itself:
since the compiler is also the checker, one can imagine
to define, enable, and disable user checks using com-
piler pragmas.

• Integrating checking with program analyses and opti-
mizations: by implementing all in the same tool, cross-
fertilizations are possible, such as optimizations de-
pendent on sequencing constraints, or checks enabled
by program optimizations.

• Integrating checking within generated code: checks
that cannot be performed statically by the compiler
could be easily integrated into the generated code to
be executed at runtime.

Mygcc is a particular point in a wide spectrum of possi-
ble trade-offs. It proves that it is possible to integrate com-
pilation and checking, almost for free in terms of imple-
mentation, and with an acceptable overhead. But this is just
a starting point. One open question that is raised is: how
much checking power can one put in a compiler to maintain
a reasonable runtime and implementation overhead?
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