
Generation of Distributed System Test-beds from High-level
Software Architecture Descriptions

John Grundy1,, Yuhong Cai1 and Anna Liu2

1Department of Computer Science
University of Auckland

Private Bag 92019, Auckland
New Zealand

john-g@cs.auckland.ac.nz

2Software Architectures and Component Technologies
CSIRO Mathematical and Information Sciences,
Locked Bag 17, North Ryde, NSW 1670, Sydney

Australia
Anna.Liu@cmis.csiro.au

Abstract

Most distributed system specifications have performance
benchmark requirements. However, determining the likely
performance of complex distributed system architectures
during development is very challenging. We describe a
system where software architects sketch an outline of
their proposed system architecture at a high level of
abstraction, including indicating client requests, server
services, and choosing particular kinds of middleware
and database technologies. A fully-working
implementation of this system is then automatically
generated, allowing multiple clients and servers to be
run. Performance tests are then automatically run for this
generated code and results are displayed back in the
original high-level architectural diagrams. Architects
may change performance parameters and architecture
characteristics, comparing multiple test run results to
determine the most suitable abstractions to refine to
detailed designs for actual system implementation. We
demonstrate the utility of this approach and the accuracy
of our generated performance test-beds for validating
architectural choices during early stages of system
development.

1. Introduction

Most system development now requires the use of
complex distributed system architectures and middleware
[1, 22]. Architectures may use simple 2-tier clients and a
centralised database; 3-tier client, application server and
database; multi-tier, decentralised web, application and
database server layers; and peer-to-peer communications
[1, 19, 22]. Middleware may include socket (text and
binary protocols), Remote Procedure (RPC) and Remote
Method Invocation (RMI), DCOM and CORBA, HTTP
and WAP, and XML-encoded data [6, 16, 17]. Data
management may include relational or OO databases,
persistent objects, XML storage, files. Integrated
solutions combining several of these approaches, such as
J2EE and .NET, are also increasingly common [18].

Typically system architects have stringent
performance (and other) quality requirements their

designs must meet. However, it is very difficult for
system architects to determine appropriate architecture
organisation, middleware and data management choices
that will meet these requirements during architecture
design [15, 9]. Architects often make such decisions
based on their prior knowledge and experience. Various
approaches exist to validating these architectural design
decisions, such as architecture-based simulation and
modelling [3, 14, 23], performance prototypes [12, 6, 11],
and performance monitoring and visualisation of similar,
existing systems [3, 21]. However, simulation tends to be
rather inaccurate, performance prototypes require
considerable effort to build and evolve, and existing
system performance monitoring requires close similarity
and, very often, considerable modification effort to gain
useful results.

We describe SoftArch/MTE, an integrated tool
allowing software architects to accurately test the
performance of their architecture designs using high-level
architecture design diagrams. Architects sketch high-level
system descriptions, including client, server, database and
host elements, and expected client requests and server and
database services. SoftArch/MTE automatically generates
a fully functional, multiple client and server deployable
performance test-bed. This incorporates code using the
specified middleware and data management approaches
and adheres to the specified architecture organisation.
This performance test bed is deployed and run on multiple
client and server hosts. Generated code and deployment
annotations automatically capture performance
measurements and relay them to SoftArch/MTE.
Performance data is then displayed in the high-level
architecture diagrams and by using external data
visualisation tools. Results from different test runs,
architecture organisations and middleware and data
management choices can be compared and recorded for
future reference.

We first motivate this work with a simple
distributed system development example, then overview
the key elements of our SoftArch/MTE approach. We
illustrate our currently-supported architecture meta-model
elements in SoftArch/MTE, along with an example high-
level architecture design. We describe and illustrate our

extensible code generation approach using XML and
XSLT transformations, which generate complex
performance test bed code. We describe and illustrate test
bed deployment, performance testing and result
visualisation in SoftArch/MTE. We compare and contrast
our research with related work and evaluate its strengths
and weaknesses, concluding with a summary of our main
research contributions and directions for future work.

2. Background

Consider the development of a system to support an
on-line video store library [8], supporting customer on-
line video search/reservation and staff in-store video
rental management tasks. Example interfaces for such a
system are illustrated in Figure 1. Video store staff might
use desktop or browser-based applications that connect to
application and/or web servers or even direct to
database(s). Customers interact with clients (applets or
HTML) that connect to web servers and/or application
servers, in turn connecting to other servers and one or
more databases e.g. holding staff, customer, video, video
rental etc details. Data processing may be centralised in
single server objects or spread across clients or multiple
servers. Middleware connectivity may use HTML, Java
RMI, DCOM, CORBA, XML and so on. Application
server objects maybe COM, CORBA or Enterprise Java
Beans. Data management may be in relational, object or
XML databases, or some even in files.

Figure 1. Parts of a simple on-line video system.

The software architect would typically have some
performance criteria any chosen architecture design must
meet e.g. maximum number of users, response time for
different user requests and data processing services, etc.
They may also have some hardware and possibly software
constraints e.g. must run on Windows/LINUX machines;
must run on low-end desktop machine; must run over
56kbps modem connection; must use either CORBA or
DCOM protocol, and so on.

As part of the Middleware Technology Evaluation
Project (MTE), we have done extensive performance
evaluation of basic architecture models using a wide

range of middleware and data management technologies
for such systems, including Enterprise Java Beans,
DCOM, MQ Series, TIBCO, and Java Messaging Service
[7, 6]. We have built many performance “test beds” –
simple distributed system implementations designed to
extensively benchmark performance of basic distributed
system architectural approaches and related middleware
technologies. While the results of these evaluations give
developers great assistance in identifying the general
behavioural characteristics of basic software architectures
using different middleware, developers must still
extensively develop prototypes of their own particular
architectural and middleware choices to get an accurate
understanding of their architectures’ likely performance.

We have also developed a tool, SoftArch, for
designing complex software architectures, generating
partial object-oriented designs and visualising developed
system architecture performance [8]. The following
sections describe our work unifying this MTE
performance work and SoftArch modelling/visualisation
work to provide an environment for automated distributed
system architecture design performance analysis.
SoftArch/MTE generates MTE-style performance test
beds from high-level SoftArch architecture design
diagrams, automatically runs multiple tests and captures
performance measures, and visualises these results back
in SoftArch diagrams. The aim of this work is to fully-
automate test bed generation, deployment and results
analysis for software architects from high level system
descriptions, but ensure they receive very accurate
estimates of the eventual, fully-developed system
performance. A rapid, exploratory architecture design
process is supported, resulting in much reduced
architecture validation time and improved eventual
architecture quality.

3. Outline of SoftArch/MTE Process

SoftArch/MTE supports evolutionary architecture
modelling, test bed generation, performance analysis and
revision. Figure 2 outlines the way SoftArch/MTE is used
by software architects. Steps 2-6 are fully automated.

The architect first constructs a high-level
architecture design, specifying clients, servers, remote
server objects and database tables, client-server, server-
server, client/server-database requests and server services,
and various kinds of connectors between these
architectural abstractions (belongs-to, runs-on, network
connection, etc) (1).b They also specify various
properties: client, server and database host machine;
number and frequency of requests (e.g. 1000 times;
continuous; every 0.25 seconds; etc); database table and
request complexity (e.g. one row select; 100 row
select/update; one row insert/delete etc); middleware
protocol (e.g. CORBA using Visibroker 4.0; TCP/IP
socket using textual XML document; etc); and so on.
Available modelling elements and their peoperies are
specified in an extensible SoftArch meta-model. SoftArch
diagrams and architecture element properites may be
versioned, copied to/from reusable templates,

collaboratively viewed and edited with other users, and so
on [8].

1. High-level
architecture designs

<architecture>
 <client>
 <name>Customer</name>
 ….
 </client>
 <server>
 …

2. Generate XML-encoded
architecture design

3. Run XSLT
transformation

scripts

Public class client1 {

 Public void static main() {
 Server.Request1();
….
 }

}

4. Generate code, IDLs,
deployment info, etc

5. Compile & upload to
multiple host machines

6. Run tests &
send results to
SoftArch/MTE
for visualisation

Client1.Request1: 157 22
Client1.Request2: 99 187
…

Figure 2. SoftArch/MTE architecture analysis process.

The architect instructs SoftArch/MTE to generate an
XML encoding of the architecture model (2). This is then
passed through a number of XSLT (XML style sheet
transformations) scripts (3), which generate Java, C++,
Delphi etc code, along with CORBA and COM IDL files,
EJB deployment descriptors, database table creation and
population scripts, compilation and start-up scripts, and so
on (4). This generated code is fully-functional and is
compiled without architects viewing or editing it in any
way (5).

Compiled (deployable) client and server program
code is then up-loaded to the specified client, server and
database host machines by sending them to a deployment
agent running on those machines via Java RMI. The
generated client and server programs and appropriate
database servers are started on all hosts and clients wait
for a SoftArch/MTE signal (via their deployment agent),
or a scheduled start time, to begin execution i.e. sending
requests to servers. SoftArch/MTE client and server code
annotations are usually used to capture performance
measures, though we can also generate scripts to
configure performance monitoring programs to collect
performance measures. Once tests complete, deployment
agents collect results (usually from client and server
program output files) and send these to SoftArch via RMI
(6).

SoftArch annotates architecture diagrams in various
ways to show performance measures, or invokes a data
visualisation tool to show performance details and
summary charts (we use MS Excel™). Multiple test run
results e.g. using different middleware, databases and
client/server request mixes can be visualised together.

Architecture designs and their performance results can be
versioned and compared by architects. 3rd party tools e.g.
MS Excel™ can be invoked by SoftArch/MTE to provide
richer data visualisations. Results can be saved to
SoftArch repositories for long-term recording and reuse.

4. Modelling Software Architectures

Figure 3 shows SoftArch being used to model a
candidate design for the video system architecture [8].
SoftArch provides a variety of predominantly graphical
architecture modeling tools (1) and an extensible meta-
model of available architecture elements, connectors and
properties. It also provides a set of “design critics” (2)
that monitor software architecture model changes and
give unobtrusive user feedback. Data collected by
performance monitoring annotations in code developed
from SoftArch models is used to visualize running system
performance at high-levels of abstraction using SoftArch
diagrams (3).

(1)

(2)

(3)

Figure 3. Example of SoftArch in use.

We have developed a SoftArch meta-model to
support encoding high-level, complex software
architecture designs enabling generation of MTE-style
test bed code. Part of this meta-model is shown in Figure
4 (1). Abstractions include clients, servers, server objects,
database tables, various requests, server services
(basically a set of server-side requests, for multi-tier
architectures), various kinds of connectors, and properties
for each abstraction. Constraints specify valid connections
and property values.

Architects design their distributed system
architectures using these meta-model abstractions and
SoftArch’s visual modelling tools. Figure 4 (2) shows an
example 3-tier architecture for part of the on-line video
system. Staff and customer clients have a number of
requests e.g. find video/customer/rental, add/update rental
item, update customer details etc. Customer clients
connect to a set of remote objects (VideoManager,
CustomerManager etc), encapsulated in two server
processes.

(1)

(2)

(3)

Figure 4. SoftArch/MTE meta-model abstractions and example high-level distributed system architecture.

These could be EJB objects/servers, CORBA or
COM objects, CORBA server or DCOM server processes
etc (we use remote CORBA objects as an example in this
paper). A database stores data (customers, staff, videos,
rentals, etc). Connections specify request/service
ownership, client-server-server connectivity and so on.
Various properties of architecture elements and
connectors are specified in dialogues (Figure 4 (3)). These
include number and kind of each request expected; kind
of remote service, remote service requests, database table
properties (expected number of rows/columns), client and
server process hosts, and so on. For complex systems,
various over-lapping and sub-views can be used by
architects to manage complexity. Automated view
consistency management is provided by SoftArch [8].

5. Generating Performance Test-bed Code

From high-level architecture designs as illustrated in
the previous section, SoftArch/MTE can generate test
beds that provide very accurate performance measures for
a developed system (well – as accurate as the mix of
client/server requests, architecture connectivity, database
table complexity, etc the architect is prepared to specify).
The more detailed the architecture design the more
accurate the performance measure results, though our
experiments with SoftArch/MTE and comparison to
completed projects’ performance have shown useful (and
quite close to actual developed system) performance

estimates can be achieved from even only 10-15 minutes
of high-level architecture design.

SoftArch/MTE

XML-encoded
architecture

XSLT
transforms

Source code; IDLs;
scripts; …

(1)

(2)

(3)

Compilers (idlj/c;
javac; g++; …)

Compiled
Code etc

(5)

Xalan XSLT
engine

SoftArch/MTE
model/meta-model

(4)

Figure 5. Code generation process.

The code generation process used by SoftArch/MTE
is outlined in Figure 5. SoftArch/MTE traverses the
architecture design using element/connector types and
meta-model data to generate a full XML encoding of the
design (1). A set of XSLT transformation scripts and an
XSLT engine (2) “transform” various parts of the XML
into program source code, IDLs, deployment descriptors,
compilation scripts, deployment scripts, database table
construction and population scripts, and so on (3). Client
and server program code is compiled automatically by
SoftArch/MTE using generated compilation scripts (4) to
produce fully-functioning, deployable test-bed code (5).

We chose to use an XML encoding and a set of
XSLT transformation scripts to do our code generation for
several key reasons:
• Code generation and architecture modelling are de-

coupled from each other
• The SoftArch/MTE models are easily translated into

XML, readable by a range of other applications
• The XSLT transformations are easily modified and

extended, or new scripts for new kinds of source
code, compilation script, IDL etc generation added,
without the need for complex coding or modifying
SoftArch/MTE source or its generated XML data

• New meta-model abstractions can be added which
add new XML items without breaking the existing
code generation

• The XML encoding is potentially usable for other
purposes e.g. import into a CASE tool for full system
design/implementation.

• Other architecture design tools in the future might be
used to generate the XML architecture encoding but
use our code generation XSLT scripts.

Figure 6 (1, 2) shows part of the on-line video
system architecture from Figure 4 encoded in XML.
Figure 6 (3) shows part of an XSLT transformation script
used to convert parts of the XML matching CORBA
client requests into CORBA client code in Java, and
Figure 6 (4) shows some of resultant generated client
code. Each of our XSLT scripts use “templates” to match
parts of the XML-encoded software architecture

descriptions (a). Each template transforms part of the
XML data into program code, IDL definition, compilation
and deployment script parts, and so on (b). This is done
by specifying static output data (e.g. fixed code and script
fragments) and dynamic output data (c) (e.g. copying
XML-encoded source data values such as names, numbers
etc into the output) in the XSLT scripts. Different XSLT
transforms can match the same XML-encoded
architecture data, generating different code (e.g. corba-
client.xsl generates server object look-up functions for
encoded CORBA server objects, whereas corba-server.xsl
generates object creation and registration code for this
same XML-encoded data). These XSLT transformation
scripts can be straightforwardly modified or new scripts
added without requiring any SoftArch code or XML
encoding modification. Currently SoftArch applies all
available scripts to an XML encoded architecture, even if
some transformations aren’t relevant for that architecture
(they simply produce no generated code).

6. Testing and Visualising Performance

Figure 7 outlines the code performance testing
process. Generated code is compiled by SoftArch, using
generated compilation scripts (1). The compiled
code/IDLs/descriptors etc and scripts to deploy/run them
on a host are up-loaded to remote client and server hosts
using remote SoftArch/MTE deployment agents (2).

Server_videoManager.xml

<?xml version="1.0" encoding="UTF-8" ?>
<AppServer>
<Name>VideoServer</Name>
<Type>CorbaServer</Type>
<Object>

<Name>VideoManager</Name>
<Type>RemoteCorbaObject</Type>
<ServerName>VideoServer</ServerName>
<Instances>1</Instances>
<Service>

<Name>findVideo_service</Name>
<Type>CorbaService</Type>
<Request>

<Name>findVideo_query</Name>
<Type>DatabaseSelect</Type>
<Status>beginend</Status>
<TimesToCall>1</TimesToCall>
<QueryStr>select Video_ID ….
<Database>video.mdb</Database>
<RecordTime>yes</RecordTime>
<TableName>video_table</TableName>
<RowsReturned>4</RowsReturned>

</Request>
</Service>
<Service>

<Name>rentVideo_service</Name>
<Type>CorbaService</Type>
<Request>

<Name>rentVideo_query</Name>
<Type>DatabaseSelect</Type>
<Status>begin</Status>
<TimesToCall>6</TimesToCall>
<QueryStr>select Video_Name …
<Database>video.mdb</Database>
<RecordTime>yes</RecordTime>
<TableName>video_table</TableName>
<RowsReturned>1</RowsReturned>

</Request>
<Request>
…

</Service>
</Object>
</AppServer>

Client_ClientTest.xml

<?xml version="1.0" encoding="UTF-8" ?>

<Client>
<Name>ClientTest</Name>
<Hosts>LocalHost</Hosts>
<Threads>1</Threads>
<Request>

<Type>CorbaRequest</Type>
<Name>findVideo</Name>
<RemoteObject>VideoManager</RemoteObject>
<TimesToCall>10</TimesToCall>
<RecordTime>yes</RecordTime>

</Request>
<Request>

<Name>rentVideo</Name>
<Type>CorbaRequest</Type>
<RemoteObject>VideoManager</RemoteObject>
<TimesToCall>4</TimesToCall>
<RecordTime>yes</RecordTime>

</Request>
<Request>
…

</Client>

Corba_client.xsl

…
<!-- CORBA requests -->
<xsl:template match="Request[Type='CorbaRequest']">

public static void <xsl:value-of select="Name"/>
(<xsl:value-of select="RemoteObject"/> server){

int iter = <xsl:value-of select="TimesToCall"/>;
String name = "<xsl:value-of select="Name"/>";
String recordTime = "<xsl:value-of select="RecordTime"/>";
System.gc();
long start = System.currentTimeMillis();
int i=0;
while(i != iter){

server.<xsl:value-of select="Name"/>_service ();
i++;

}
if(recordTime.equals("yes")){

long time = System.currentTimeMillis() - start;
double elapse = (double)(time) / (double)(Math.max(1,iter));
String perf = name+"\t"+time+"\t"+iter+"\t"+elapse;
System.out.println(perf);
System.err.println(perf);

}
}

</xsl:template>

(1)

(2)
(3)

ClientTest.java

public class ClientTest
{
…

public static void findVideo(VideoManager server){
int iter = 10;
String name = "findVideo";
String recordTime = "yes";
System.gc();
long start = System.currentTimeMillis();
int i=0;
while(i != iter){

server.findVideo_service ();
i++;

}
if(recordTime.equals("yes")){

long time = System.currentTimeMillis() - start;
double elapse = (double)(time) / (double)(Math.max(1,iter));
String perf = name+"\t"+time+"\t"+iter+"\t"+elapse;
System.out.println(perf);
System.err.println(perf);

}
}

…
}

(4)

(a)

(c)
(b)

Figure 6. Generated SoftArch/MTE XML architecture encoding, example XSLT transform and generated code.

The client and server programs are then run: server
programs started; EJB components deployed into EJB
servers; database servers started and database table
initialisation scripts run; and then clients started (3).
Clients look up their servers and then await SoftArch
sending a signal (via their deployment agent) to run, or
may start execution at a specified time.

SoftArch/MTE

Source
Code Generated

scripts

Compilers

Compiled
Code

Remote
Deployment Agent

Running client/
server

Performance
Results

MS Excel

Remote
Hosts

(1)

(2)

(3)

(5)

(4)

(6)

Figure 7. System deployment and test run process.

Clients run their server requests, typically logging
performance timing results for different requests to a file

(4). Servers do like-wise. 3rd party performance
measuring tools can also be deployed to capture
performance information, and are configured by
SoftArch/MTE-generated scripts. Performance results are
sent back to SoftArch/MTE for visualisation (5), possibly
using 3rd party tools like MS Excel™ (6).

We built a basic deployment agent to allow
SoftArch/MTE-generated programs, components and
databases to be automatically deployed for architects on
multiple hosts. These also play a role in co-ordinating
performance test initiation and results transmission to
SoftArch/MTE. We used Java RMI to upload code,
deployment scripts and database initialisation scripts to
client and server host deployment agents, and to send
performance measures back to SoftArch/MTE.

Performance results currently include name of
request/service, name of owning object/process, number
of times called, overall time taken, and data
stored/retrieved. SoftArch/MTE records these
performance results against appropriate architecture
elements, summarising results across multiple test bed
client and server instantiations. Summarised results
include number of calls made by a request/to a service;
average and total time to complete request/service;
average and total time spent in a request/service; and
average and total database accesses/updates performed.
Results are visualised by annotating SoftArch/MTE
diagrams (e.g. via shading and line thickness), as shown
in Figure 8, and in dialogues showing total values.

(1)

(2) (3)

Figure 8. Visualising test run results in SoftArch/MTE and MS Excel™.

The user requests the particular performance results
they wish to view. Annotations are used to visually
indicate light vs heavy requesting/loading, small vs large
time consumption, small vs large data transferral, etc.
Figure 8 (1) shows the video system diagram from Figure
4 annotated after a performance test (showing total time
taken summarised data). Figure 8 (2) shows performance
result values for one client collected by SoftArch/MTE
and opened for display using a MS Excel™ spreadsheet.
Figure 8 (3) shows details of several performance tests of
this system with different architectures (multiple CORBA
objects in one server process; remote data manager
objects split across 2 server processes; and data managers
across 3 server processes). These results were appended
into one file and a reusable MS Excel™ chart used to
visualise these values.

7. Discussion

The need to evaluate software architecture and
distributed systems middleware performance has been
recognised for a long time [11, 15, 9]. Developers
typically build prototype systems i.e. performance test
beds by hand to test architecture performance [6, 11].
This is very time-consuming and if even limited
architecture changes are made, often whole new
prototypes needed to be built to validate the new
architecture. SoftArch/MTE generates test bed prototypes
whose performance measures are generally very accurate
but require a tiny fraction of the developer effort that
hand-built prototyping approaches need.

Various architecture and middleware performance
simulation and modelling methods and tools have been
developed [5, 16, 14, 23]. These make it easier for
architects to express and explore likely architecture
performance, but their performance results are often quite
inaccurate. Specification of architectures and visualisation
of simulation-derived performance measures are often
predominantly text-based, lacking our SoftArch/MTE’s
easy to use, high-level, graphical abstractions.

A variety of middleware, network, database and
software performance monitoring and architecture
visualisation tools exist [15, 2, 4, 10, 21]. These all
typically require a fully developed system in order to be
used, meaning either prototyping a system by hand or
analysing a built system with a related architecture to that
planned. Visualisations in these tools are often quite low-
level i.e. tend to focus on programmatic features rather
than high-level architectural abstractions.

Benchmarks published for various middleware,
architecture and database systems can be useful for
architects to gauge likely relative performance for
different design choices [20, 6]. Unfortunately most
system architectures are a complex mix of design choices
(architecture layout and divisions of responsibility;
middleware and database choices; and host machine and
network characteristics). Accurate performance measures
thus can only be gained from a fully-developed system, or
from a prototype sufficiently close to the eventual system

in generated code and example processing requests and
data.

We have used SoftArch/MTE to design, generate
and performance evaluate a range of simple architectural
designs like those of the video system with differing
middleware and database choices. We have also used it to
design and evaluate a number of quite complex system
architectures (including architectures for an on-line, co-
operative travel planning system, a large, complex
enterprise business system, and an integrated health
informatics system). We have compared SoftArch/MTE’s
performance analysis results we obtained for these three
systems to those of fully developed distributed systems
for these applications (two developed by ourselves, one
developed by a local software company). We performance
tested different SoftArch/MTE architecture and
middleware choices, and compared these results to those
obtained manually performance testing modified versions
of these three medium-sized software systems. We found
all SoftArch/MTE performance results extremely close
(within 5-10%), and in one instance almost identical, to
the real systems’ performance measures, despite very
little effort required to sketch and modify the high-level
architecture designs in SoftArch/MTE (for all these
examples less than 30 minutes each).

While very little software architect time needs to be
spent to obtain these highly accurate results (compared to
days of prototyping for even simple architectures), the
approach has its limitations. The architect is constrained
to use the provided meta-model abstractions and XSLT
code generation scripts. If they wish to evaluate other
architecture abstractions or different middleware, they or
others must extend the meta-model and code generation
support. It is challenging for an architect to estimate the
likely mix of client requests and server-to-server requests
in the eventual system, and thus inaccurate loading will
produce inaccurate performance measures. However, all
testing approaches (prototypes, simulation and even
monitoring fully developed systems) suffer from the same
problem when using estimated loading rather than real
users and data. We have noticed the ease in specifying
discrete client and server requests in SoftArch/MTE
architecture designs does tend to lead architects to
specifying overly-simple designs when a real system
would actually have a much more complex mix of client-
server, server-server and server-database requests. If only
a small number of client and server hosts are available for
testing, SoftArch/MTE can not directly estimate likely
performance on larger numbers of machines as
performance simulation techniques may do.

We are adding new code generation scripts to
SoftArch/MTE and meta-model abstractions to support
generating message-oriented middleware (e.g. MQ Series
and Tuxedo) code and DCOM component requests, and
are looking to generate code for HTTP and .NET-based
middleware. We are building Wizards to allow architects
to specify full client and server requests and services for
complex architecture designs without needing to draw
individual element icons and connectors and specify their
properties. We are working on improved, richer

performance result visualisations, including showing
results for different test runs on (slightly) modified
architectures together in the same diagram. We are
investigating using a “standard” XML-based architecture
design encoding, like xADL [13], to allow other
architecture design tools to use our code generation and
deployment scripts.

8. Summary

SoftArch/MTE provides a high-level, extensible
architectural modelling language allowing architects to
quickly design and evolve key architectural
characteristics. These specifications are rich enough to
allow fully-functional test bed code to be generated,
deployed and run, all without any developer involvement.
A set of extensible XSLT transformations scripts are used
to transform XML-encoded architecture designs into test
bed client and server program code and
compilation/deployment scripts, with compiled systems
automatically uploaded and configured to multiple host
machines. Test runs are performed on these client and
server host machines and results automatically captured,
aggregated and visualised by SoftArch/MTE in the
original high-level architecture diagrams. SoftArch/MTE
architecture designs and performance figures can be
versioned and stored for future comparison of different
architecture designs and their performance test results.
Experiences to date with SoftArch/MTE have
demonstrated it provides a useful, accurate automated
architecture performance analysis environment for
complex distributed systems development.

References

1. Bass, L., Clements, P. and Kazman, R. Software
Architecture in Practice, Addison-Wesley, 1998.

2. Beaumont, M. and Jackson, D. Visualising Complex
Control Flow. In 1998 IEEE Symposium on Visual
Languages, Halifax, Canada, September 1998, IEEE CS
Press.

3. Chen, M., Tang, M. and Wang, W. Software Architecture
Analysis - A Case Study, In Proceedings of COMPSAC’99.

4. Egyed, A. and Kruchten, P., Rose/Architect: a tool to
visualize architecture, In Proceedings of the 32nd Hawaii
International Conference on System Sciences, January
1999, IEEE CS Press.

5. Gomaa, H., Menascé, D., and Kerschberg, L. A Software
Architectural Design Method for Large-Scale Distributed
Information Systems, Distributed Systems Engineering
Journal, Sept. 1996, IEE/BCS.

6. Gorton, I. And Liu, A. Evaluating Enterprise Java Bean
Technology, In Proceedings of Software - Methods and
Tools, Wollongong, Australia, Nov 6-9 2000, IEEE CS
Press.

7. Gorton, I., Liu, A., et.al. Evaluating Enterprise Middleware
Technologies, Middleware Technology Evaluation Report
Series, available from CSIRO Publishing
www.cmis.csiro.au/adsat/mte.htm and Cutter Consortium,
www.cutter.com/itgroup/reports, February 2001

8. Grundy, J.C. and Hosking, J.G. High-level Static and
Dynamic Visualisation of Software Architectures, In
Proceedings of 2000 IEEE Symposium on Visual
Languages, IEEE CS Press.

9. Grundy, J.C. and Liu, A. Directions in Engineering Non-
Functional Requirement Compliant Middleware
Applications, In Proceedings of the 3rd Australasian
Workshop on Software and Systems Architectures, Sydney,
Australia, Nov 2000, Monash University.

10. Hill, T., Noble, J. Visualizing Implicit Structure in Java
Object Graphs, In Proceedings of SoftVis’99, Sydney,
Australia, Dec 5-6 1999

11. Hu L., Gorton, I. A performance prototyping approach to
designing concurrent software architectures, In
Proceedings of the 2nd International Workshop on Software
Engineering for Parallel and Distributed Systems, IEEE CS
Press, pp. 270 – 276.

12. Jurie, M.R., Rozman, I., Nash, S. Java 2 distributed object
middleware performance analysis and optimization,
SIGPLAN Notices, vol.35, no.8, Aug. 2000, ACM Press,
pp.31-40.

13. Khare, R., Guntersdorfer, M., Oreizy, P., Medvivovic, N.
and Taylor, R.N. xADL: Enabling Architecture-Centric
Tool Integration With XML, in Proceedings of the 34th

Hawaii International Conference on System Sciences, Jan
3-6 2001, Maui, Hawaii, IEEE CS Press.

14. Liu, A. Dynamic Distributed Software Architecture Design
with PARSE-DAT, In Proceedings of Software – Methods
and Tools, Wollongong, Australia, Nov. 2000, IEEE CS
Press.

15. McCann, J.A., Manning, K.J. Tool to evaluate performance
in distributed heterogeneous processing. In Proceedings of
the Sixth Euromicro Workshop on Parallel and Distributed
Processing, IEEE CS Press, 1998, pp.180-185.

16. Petriu, D., Amer, H., Majumdar, S., Abdull-Fatah, I. Using
analytic models for predicting middleware performance. In
Proceedings of the Second International Workshop on
Software and Performance, ACM 2000, pp.189-94.

17. Petrovski, A. and Grundy, J.C. Web-enabling an integrated
health informatics system, In Proceedings of the 7th

International Conference on Object-oriented Information
Systems, Calgary, Canada, August 27-29 2001, Springer
LNCS.

18. Shannon, B., Java 2 platform, enterprise edition : platform
and component specifications, Addison-Wesley, 2000.

19. Shaw, M. and Garlan, D. Software Architecture, Prentice
Hall, 1996.

20. TechMetrix, The Application Server Directory,
www.techmetrix.com/trendmarkers/techmetrixasd.php3.

21. Topol, B., Stasko, J. and Sunderam, V., PVaniM: A Tool
for Visualization in Network Computing Environments,
Concurrency: Practice & Experience, Vol. 10, No. 14,
1998, pp. 1197-1222.

22. Vogal, A. CORBA and Enterprise Java Beans-based
Electronic Commerce, International Workshop on
Component-based Electronic Commerce, Fisher Center for
Management & Information Technology, UC Berkeley,
25th July, 1998.

23. Woodside, C. Software Resource Architecture and
Performance Evaluation of Software Architectures, In
Proceedings of the 34th Hawaii International Conference
on System Sciences, IEEE CS Press, Maui, HA., Jan 2001.

