
Inferring Specifications to Detect Errors in Code

Mana Taghdiri and Daniel Jackson

Computer Science and AI Lab

Massachusetts Institute of Technology

Cambridge, MA 02139

{taghdiri, dnj}@mit.edu

Abstract

A new static program analysis method for checking
structural properties of code is proposed. The user need
only provide a property to check; no further annota-
tions are required. An initial abstraction of the code
is computed that over-approximates the effect of func-
tion calls. This abstraction is then iteratively refined in
response to spurious counterexamples. The refinement
involves inferring a context-dependent specification for
each function call, so that only as much information
about a function is used as is necessary to analyze its
caller. When the algorithm terminates, the remaining
counterexample is guaranteed not to be spurious, but
because the program and its heap are finitized, absence
of a counterexample does not constitute proof.

1. Introduction

Software model checkers typically work by extract-
ing a state machine from the code. Procedure calls are
treated as control constructs; the abstraction bound-
aries that they represent are not usually exploited in
the subsequent analysis. This is odd, since the modu-
larization of the code into procedures was presumably
chosen in order to make reasoning easier.

More traditional program verification approaches, in
contrast, made extensive use of the program structure
in structuring the analysis. Each procedure would be
checked against its specification, using specifications of
the called procedures as surrogates for their code. If
these approaches could be automated, we might have
the best of both worlds: a fully automatic analysis that
exploits the modularity of the code.

Moreover, software model checking techniques usu-
ally address only temporal properties; the traditional
approaches accommodate arbitrary properties that re-
late the values of the program state before and after
execution of a procedure.

Some tools have been developed that aim at exploit-
ing the structure of the program. ESC/Java[9], for
example, extracts verification conditions from a proce-
dure, and presents them for proof (or refutation) to a
specially tailored theorem prover. The tool has been
applied successfully to substantial programs, but it suf-
fers from an obstacle that severely limits its applicabil-
ity in practice. It turns out that the burden of writ-
ing specifications for the called procedures is consider-
able. Moreover, to analyze a procedure at the root of
a large tree, every procedure in the tree must be anno-
tated. Jalloy[15], a counterexample detector for Java
programs, suffers from the same problem, and although
it can inline called procedures, such inlining does not
scale.

This paper proposes a strategy to overcome this ob-
stacle. A procedure-based analysis is performed that
requires specifications of called procedures, but the
specifications are inferred from the code rather than
being provided by the user. Of course, determining
the perfect specification that summarizes the exact be-
haviour of a procedure is not feasible. For this ap-
plication, however, it is sufficient to summarize only
those aspects of the behaviour that are relevant in the
context of the calling procedure. Our inference scheme
exploits this. In fact, the inferred specifications are sen-
sitive not only to the calling context, but also to the
property being checked. As a result, a very rough spec-
ification is sometimes sufficient, because even though it
barely captures the behaviour of the called procedure,
it nevertheless captures enough to verify the caller. By
starting with the roughest specification first, and re-
fining it as needed, our scheme ensures that no more
inference work is done than is necessary.

The fundamental idea underlying the strategy is
a familiar one: counterexample-guided refinement of
an abstraction[3]. The key steps are as follows: (1)
the analysis is applied to an abstraction of the code;
(2) if no counterexample is found, the analysis termi-
nates and has successfully verified the code (against the

1

negated
propertyprogram Abstraction

abstract
program

counter-
example

constraints

no
counter-
example

invalidity
witness

abstract
trace

Translation

valid?

Validity Check Solving

unsat?

sat?invalid?
Spec InferenceSpec

Figure 1. An Overview of the Framework

given property); (3) if a counterexample is found, it is
checked for validity; (4) if the counterexample is valid,
a fault has been discovered and the analysis terminates;
otherwise (5) a more refined abstraction is computed,
and the process is repeated.

This general scheme has been applied in a number
of different contexts[1, 12, 8, 7]. Our approach dif-
fers from all of these in that the abstraction and its
subsequent refinements follow the abstraction bound-
aries of the code itself. To our knowledge, all previous
applications of this idea to software analysis involve re-
finement of predicate abstractions[10]. Our approach,
in contrast, refines the specifications used to represent
the behaviour of called procedures.

This paper describes a framework for counterexam-
ple-guided refinement of procedure specifications. It
assumes an underlying analysis in which counterexam-
ples are found by solving constraints extracted from the
code and specification. The framework itself is not de-
pendent on any particular properties of the logic used,
although we use the Alloy modelling language as the
logic, and a SAT solver as the constraint solver. In
order to handle undecidable properties of data struc-
tures, the program is finitized (by bounding the number
of loop unrollings, as in ESC/Java and Jalloy), and the
space of possible heaps is finitized too (by limiting the
heap’s size). Consequently, although counterexamples
are guaranteed not to be spurious, their absence does
not constitute proof of correctness. The framework,
however, does not depend on these compromises, and
seems to hold promise for application in other contexts,
such as the method recently proposed by Flanagan[7].

The rest of the paper is organized as follows: Sec-
tion 2 gives an overview of our framework. Section
3 describes the basic structures. Section 4 gives the
analysis steps. Section 5 describes our implementa-
tion. Section 6 describes our experiments. Section 7
gives related work, and Section 8 concludes the paper.

2. Overview

Our analysis is focused on checking code against a
property given as a (partial) specification of a proce-
dure selected by the user. We particularly target struc-
tural properties, i.e., properties that constrain the con-
figuration of the heap after the execution of a proce-
dure. The property can be expressed in any language
that can be converted to a set of logical constraints.

Figure 1 shows our analysis framework. It consists
of the following phases:

Abstraction: We construct an initial abstract pro-
gram from the given program by replacing all proce-
dure calls in the analyzed procedure with some ap-
proximate specifications. This abstraction is an over-
approximation of the original code: all feasible execu-
tions of the original code are feasible in the abstract
program, but not vice versa.

Translation: The abstract program is translated to
a set of constraints that constitute a logical formula.
The translation preserves the semantics of the code:
any execution in the abstract code corresponds to a so-
lution satisfying the generated formula and vice versa.
Our method is independent of exactly how this trans-
lation is done, as long as it is semantics-preserving.

Solving: The formula generated in the previous
phase is conjoined with the negation of the user-
provided assertion. It is then given to a constraint
solver to find a satisfying solution, called an abstract
trace. An abstract trace denotes an execution in the
abstract program that violates the assertion. If no so-
lution is found, the assertion holds in the abstract pro-
gram and thus in the original (finitized) program.

Validity Check: An abstract trace suggests a be-
havior for each eliminated procedure by assigning val-
ues to its inputs and outputs. The validity of each
suggested behavior is checked in the original program,
again using a constraint solver. If a behavior is valid,

2

the solution found in this phase is used to concretize
the abstract trace. If the behaviors of all procedure
calls are valid, the trace is a feasible counterexample
and is returned. However, if the inputs and outputs as-
signed to a procedure denote an invalid behavior, they
represent an invalidity witness.

Specification Inference: A more precise specifica-
tion is inferred for the procedure corresponding to the
found invalidity witness. We use a constraint solver
capable of generating proofs to construct a proof of in-
validity for the witness. A specification that rules out
the given invalid behavior is then extracted from the
proof. Subsequently, the abstract program is refined
by conjoining this new specification with the old one,
and the process starts over.

2.1. Motivating Example

The example given in Figure 2 illustrates our
method. The intersect function is selected for anal-
ysis. It takes two lists of integers and returns a list of
the elements that appear in both of them. The given
property asserts that if either one of the input lists is
empty, the returned list is also empty.

For simplicity, let us assume that the finitized code
(not shown here) unwinds the loops only once. Fig-
ure 3.a shows the initial specifications computed for
each called function. A specification is a logical for-
mula whose elementary subformulas update variables
and fields. The keyword $return denotes the returned
value of a function. A question mark denotes a nonde-
terministic computation that yields any value of the ap-
propriate type arbitrarily. For example, $return ← ?

in the specification of contains says that any boolean

value may be returned; ?.val ← ? says that the value
of the val field for any List object may be set to any
integer. Any variable or field not assigned a value in
a specification has the same value before and after the
execution of the function.

The initial abstract program is presented in Figure
3.b. The line numbers shown in this figure correspond
to the line numbers given in Figure 2. The specifica-
tions shown in Figure 3.a are inlined at the call points
of their corresponding functions.

This abstract program and the negation of the given
property are then translated to a set of constraints.
The abstract trace shown in Figure 4 is found by a
constraint solver as a counterexample. Each line in this
figure consists of a line number, a program state and a
statement from the abstract program that is executed.
The line numbers correspond to the line numbers in
Figure 3 and show the control flow of the execution.
The program state at each line shows the values bound
to the variables before the execution of the statement in

class List {

int val;

List next;

List(int v) {

val = v;

next = null;

}

/** assert:

(l1 = null) || (l2 = null) => $return = null **/

static List intersect(List l1, List l2) {

0: List res = null;

1: while (l1 != null) {

2: boolean cnt = contains(l2, l1.val);

3: if (cnt)

4: if (res == null)

5: res = new List(l1.val);

6: else

7: res.add(l1.val);

8: l1 = l1.next;

9: }

10: return res;

}

void add(int v) {

List c = new List(v);

List l = this;

while (l.next != null)

l = l.next;

l.next = c;

}

static boolean contains(List l, int v) {

while (l != null) {

if (l.val == v) return true;

l = l.next;

} return false;

}}

Figure 2. Example

that line. Because of space limitations, the unchanged
values are not repeated.

In this trace, the contains function and the List

constructor are called. The values assigned to the non-
deterministic computations are such that the contains
function (Line 2) returns true for the inputs int0

(l1.val) and a null list (l2). Furthermore, the
List constructor (Line 5) assigns int1 instead of int0
(l1.val) to res.val. Both of these behaviors are in-
valid. The behavior assigned to the contains function
is analyzed first, by checking the original code of this
function against the values given to its inputs and out-
puts. Since the behavior is invalid, it is marked as an
invalidity witness and no further validity checking is
performed at this stage.

A constraint solver is then used to generate a proof

3

List.List(v):[$return.val <- ? && $return.next <- ?]

List.add(v):[?.val <- ? && ?.next <- ?]

List.contains(l, v):[$return <- ?]

(a)

class List {

int val;

List next;

static List intersect(List l1, List l2) {

0: List res = null;

1: if (l1 != null) {

2: [boolean cnt <-?] //contains(l2, l1.val)

3: if (cnt)

4: if (res == null)

5: [res.val <-? && res.next <-?]//List(l1.val)

6: else

7: [?.val <-? && ?.next <-?] //res.add(l1.val)

8: l1 = l1.next;

9: } <assert l1 == null>

10:return res;

}}

(b)

Figure 3. (a) Initial Specification of the Called
Functions. (b)Initial Abstract Program

for the invalidity of the inputs and outputs assigned to
the contains function. The following specification is
then extracted from the proof.

List.contains(l, v): [l <- l2 && v <- l1.val &&

(l = null => $return <- false) &&

(l != null => ($return <- ? && l <- ?))]

The generated specification only includes those
parts of the contains function that are relevant to the
found counterexample; the rest of the function is still
abstracted. This new specification is inlined at the call
point of the contains function and the process starts
over. In this example, the analysis of the new abstract
program generates no counterexamples. Thus, the pro-
cess terminates and the property has been validated.

3. Basic Structures

3.1. Abstract Program

Syntax. An abstract program is constructed to
check the correctness of a procedure selected by the
user, called the initial procedure. Our framework can
be applied to any programming language that supports
procedure declarations and can be translated to logical
constraints. We use a subset of Java syntax shown in
Figure 5 to illustrate our approach.

0: [l1.val = int0, l1.next = null,

l2 = null] res = null;

2: [res = null, ...] cnt <- ?

5: [cnt = true, ...] res.val <- ? && res.next <- ?

8: [res.val = int1, res.next = null,..] l1 = l1.next;

10: [l1 = null, ...] $return = res;

Figure 4. Abstract Trace for the Example

An abstract program consists of a set of class decla-
rations that may contain procedure definitions. A pro-
cedure is defined by a name and a sequence of formal
parameters and may return a value. A statement can
be a local variable definition, an assignment, a branch,
a return statement or a procedure call. It is assumed
that expressions are free of side effects. Branch con-
ditions are boolean predicates represented by pred. A
procedure call in an abstract program is a triple con-
sisting of a flag, the name and actual parameters of
the procedure, and a specification. A flag can be ei-
ther transparent or opaque. A transparent flag means
that the body of the called procedure will be inlined
in the calling context during the analysis. An opaque
flag, on the other hand, means that the provided spec-
ification will be used for the called procedure during
the analysis.

Since the analysis is done on a finitized program,
there are no loops in our language. All loops and re-
cursive calls in the original program are assumed to be
unwound some fixed number of times before the ab-
straction.

Semantics. We use program points to denote the
control points in a program. A program point corre-
sponding to a procedure call is called a call point. The
set of program points and call points of a program are
represented by Π and Ψ respectively (Ψ ⊆ Π). Further-
more, we define sπ to denote the statement from the
original program that corresponds to a program point
π. Thus, for a call point ψ, sψ denotes the procedure
called corresponding to ψ.

A program state σ is defined at each program point
π as a mapping from variables accessible at π to some
values. The set of all possible states of a program is
denoted by Σ.

Each program statement can be viewed as a transi-
tion in the state of the program and thus, represented
by a set of pairs of program states, i.e. s ⊆ Σ × Σ.
That is, a pair of program states (σ, σ′) is included in
the set defining a statement s if and only if executing
s in the state σ can result in the state σ′.

Transformations. Two transformations are de-
fined on abstract programs: close and open. Given

4

program ::= classDecl*

classDecl ::= class class{fieldDecl* procDecl*}
fieldDecl ::= class field;

procDecl ::= class proc(paramDecl*){stmt}
paramDecl ::= class var,

stmt ::= class var | var = new class()

| var = expr | expr.field = expr

| if pred stmt else stmt

| return expr | procCall

| stmt; stmt

procCall ::= flag proc(expr*) <spec>

flag ::= transparent | opaque

Figure 5. Syntax for Abstract Program

spec ::= var <- expr | var <- ? | ?.field <- ? |

var = expr | !spec | spec && spec |

spec || spec | spec => spec

Figure 6. Syntax for Specification

an abstract program, the close transformation changes
the flags of all procedure calls to opaque, i.e. abstracts
all procedure calls. The open transformation, in con-
trast, takes an abstract program and a call point and
changes the flag at that call point to transparent, i.e.
inlines one procedure call.

3.2. Specification

A specification describes the behavior of a pro-
cedure in a calling context either exactly or over-
approximately. As shown in Figure 6, a specification
is a logical formula. The ← sign denotes an assign-
ment whereas = is an equality predicate. var ← expr

changes the value of the variable var to the expression
expr. A question mark in an assignment denotes a
nondeterministic value. It can be replaced with any
computation of the appropriate type. Thus, var ← ?

allows the value of var to change arbitrarily whereas
?.field ← ? allows an arbitrary change in the value
of the given field in any object of the appropriate type.
Furthermore, the logical operators negation, conjunc-
tion, disjunction, and implication are respectively de-
noted by !, &&, ||, and =>. Any variable or field not
assigned a value in the specification of a procedure is
assumed to have the same value before and after the
procedure call.

3.3. Abstract Trace

An abstract trace denotes an execution of an abstract
program represented by a sequence of pairs of program

points and program states, i.e.
−−−−→
Π× Σ. Two consecu-

tive pairs (π, σ) and (π′, σ′) in a trace t mean that sπ′

is executed immediately after sπ, and that σ and σ′ are
the program states before the execution of sπ and sπ′

respectively. It should be noted that the program state
of the first pair denotes the initial state of the program
which defines an initial heap configuration. The pro-
gram state of the last pair represents the final state of
the program. The program point of the last pair is a
dummy point indicating the end of the program.

In an abstract trace t, the state of the program at
a point π is denoted by statet(π). Furthermore, for
a program state σ, succt(σ) gives the program state
immediately following σ in t. (The final program state
does not have a successor.) A trace t is valid if and only
if at each program point π included in t, the transition
of the program state is consistent with the semantics of
the statement corresponding to π as expressed in the
original program. That is,
t is valid ⇐⇒ ∀(π, σ) ∈ t, (σ, succt(σ)) ∈ sπ

3.4. Invalidity Witness

An invalidity witness is a triple of a program point
and two program states (π, σ, σ′) where the state tran-
sition from σ to σ′ is not consistent with the seman-
tics of the original statement corresponding to π, (i.e.
(σ, σ′) /∈ sπ).

4. Basic Computations

4.1. Abstraction

During the abstraction phase, initial specifications
are computed for all procedure calls. Initial specifica-
tions could allow any arbitrary behavior for the proce-
dures. However, starting with more precise specifica-
tions can result in fewer refinements.

The initial specification we compute for a procedure
aims at preserving its frame conditions, i.e. any vari-
able or field not mutated by the procedure is not mu-
tated in the specification. However, not all frame con-
ditions can be computed statically. For example, if
a program uses dynamic dispatching so that different
procedure bodies are bound to a single procedure call
in different executions, computing exact frame condi-
tions statically is impossible. Consequently, we com-
pute conservative specifications: any memory location
that may be changed by a procedure call is allowed to
change.

Figure 7 gives our abstraction rules. For a procedure
p called at a program point ψ, the global set Gψ denotes
the set of all objects accessible both in p (the callee)
and at ψ (the caller). Any change made by p to an
object in Gψ is visible to its caller.

5

δ[var = new class] = var← ? (if var ∈ G)

δ[var = expr] = var← ? (if var ∈ G)

δ[expr.field = expr] = ?.field← ?

δ[if pred s else s’] = δ[s] && δ[s’]
δ[return expr] = $return← ?

δ[proc(expr*)] =δ[stmt] (where proc(var*){stmt})

δ[s; s] = δ[s] && δ[s’]

Figure 7. Abstraction Rules

The abstraction function δ constructs a conservative
specification for a procedure call based on its global set.
As shown in Figure 7, any modification by a procedure
to an object in its global set is reflected as a nonde-
terministic assignment in the procedure’s specification.
In order to take care of possible aliasing in the original
program, modifications to a field f of an object of type
T causes nondeterministic values to be assigned to the
field f of all objects of type T . The δ function is not
applied to expressions since they are assumed to have
no side effects.

In order to abstract a procedure p, i.e. to determine
what memory locations it may mutate, all of its callees
should be abstracted first. Thus, procedures should be
abstracted in a certain order. We compute the order by
constructing the call graph g of the initial procedure.
Since the program is finitized, g is an acyclic directed
graph (DAG). Therefore, we can compute a topological
sort[5] for g that is an ordering l over all procedures so
that all callees of a procedure p precede p in l. The
procedures are therefore abstracted in the order they
appear in l.

After computing initial specifications, an abstract
program is generated from the original program by an-
notating all procedure calls with their computed spec-
ifications. The close transformation is then applied to
the generated program to make all procedure calls ab-
stracted.

4.2. Validity Check

A counterexample found in an abstract program is
an abstract trace that should be checked for validity in
the original program. Since the only abstracted state-
ments are procedure calls, the only state transitions
that may be invalid in an abstract trace are those cor-
responding to call points. As our abstraction is based
on the procedure call hierarchy of the code, the check
for validity is also done hierarchically. A procedure q
called within a procedure p is checked for validity only
after the validity of the state transition assigned by the
abstract trace to p has been validated.

Figure 8 shows how the validity of an abstract trace t
is checked. The cpSet function takes an abstract trace

procedure validityCheck(t:AbsTrace):Witness{
callpoints = cpSet(t);
forall ψ ∈ callpoints {

p = sψ;
pre = statet(ψ);
post = succt(pre);

d̂ = toConstraint(pre) ∧ toConstraint(post);
p̂ = toConstraint(p);
solution = solve(p̂ ∧ d̂);
if (solution) {
t.concretize(ψ, solution);
callpoints = callpoint∪ cpSet(solution)
}else return (ψ, pre, post);

} return null;
}

Figure 8. Validity Check Routine

and returns all of its call points as a set. For each
call point ψ in t, the open transformation is applied to
the abstract program to get the body of the procedure
p called at ψ. It should be noted that all procedures
called within p are still abstracted due to the semantics
of the open transformation.

Variables pre and post denote the states of the pro-
gram before and after the procedure p is called in the
trace t. These states are translated to sets of con-
straints constituting logical formulas. The conjunc-
tion of these formulas that encodes the data is rep-
resented by d̂. The procedure p is also translated into
logical constraints denoted by p̂. This translation is
semantics-preserving. However, since the callees of p
are over-approximated, the generated formula is an
over-approximation of p.

A constraint solver is then used to find a satisfying
solution for p̂ ∧ d̂, i.e. to determine whether executing
p in the assigned pre-state might result in the assigned
post-state. A solution denotes a trace t′ in p validating
the assigned state transition. The abstract trace t is
then concretized at the call point ψ by inlining t′. How-
ever, t′ may introduce new call points corresponding to
the procedures called in p. Since these call points are
abstract, the validity of their state transitions in t′ will
be checked in the next iterations of the loop in the va-
lidity check routine. Although the exact order in which
call points are checked may affect the performance of
the analysis, it does not affect the correctness of the
method as long as all call points are checked.

If no satisfying solution exists for the formula p̂ ∧ d̂
at a call point ψ, it means that executing the procedure
p in the pre-state can not result in the given post-state.
In this case, the triple of (ψ, pre, post) is returned by
the routine as an invalidity witness. However, if the

6

procedure SpecInference(ψ: CallPoint,

σ, σ′:ProgState): Spec {

p = sψ;

d̂ = toConstraint(σ) ∧ toConstraint(σ′);

p̂ = toConstraint(p);
ĉ = invalidityProof(p̂ ∧ d̂);
return (conj(set(ĉ)− set(d̂)));
}

Figure 9. Spec Inference Routine

state transitions corresponding to all call points are
valid, no invalidity witness is returned and the trace t
is a feasible counterexample.

4.3. Specification Inference

Given an invalidity witness (ψ, σ, σ′), a more precise
specification is generated for the procedure p called at
ψ that rules out the given invalid state transition. Fig-
ure 9 shows the specification inference routine. The
pre-state σ and the post-state σ′ of p are translated
into logical formulas whose conjunction is denoted by
d̂. The body of p is also translated into a semantics-
preserving logical formula p̂.

Since the formula p̂ ∧ d̂ is unsatisfiable, a con-
straint solver capable of generating proofs is used to
find a proof of invalidity, namely ĉ. The proof of inva-
lidity for a formula f gives a subset of the constraints
in f that are inconsistent. Thus, ĉ encodes the reason
that the given state transition is not valid. However, ĉ
can not be used as a specification because it is unsat-
isfiable; using it in the analysis causes any assertion to
be vacuously true. In order to get the specification, we
need to extract a valid tautology from ĉ.

The translation of a program state or a procedure
to constraints, i.e. the toConstraint function, gener-
ates a formula that is a conjunction of a set of con-
straints. The operator set(f) breaks any such formula
f into its constituting set of constraints. That is, if
f = c1 ∧ c2 ∧ . . . ∧ cn, then set(f) = {c1, c2, . . . , cn}.
The operator conj(C) does the reverse, i.e. takes a
set of constraints and returns their conjunction as a
logical formula. Thus, if C = {c1, c2, . . . , cn}, then
conj(C) = c1 ∧ c2 ∧ . . . ∧ cn.

Since ĉ is an invalidity proof for p̂∧ d̂, by definition,
set(ĉ) ⊆ set(p̂ ∧ d̂) and ĉ is unsatisfiable. However,
p̂ is satisfiable because any execution of the procedure
p is a solution to p̂. Furthermore, d̂ is also satisfiable
because its constraints are all disjoint, i.e. each one
defines the value of one variable. Therefore, ĉ must
include constraints of both p̂ and d̂. That is, ĉ = q̂ ∧ r̂
where set(q̂) ⊆ set(p̂) and set(r̂) ⊆ set(d̂).

The subformula q̂ denotes a sequence of statements
in p that shows the values defined in r̂ do not indicate
a valid state transition. Since set(q̂) ⊆ set(p̂), q̂ is
satisfiable and is used as a specification. It can be
extracted by comparing ĉ against d̂, i.e.
q̂ = conj(set(q̂ ∧ r̂)−set(d̂)) = conj(set(ĉ)−set(d̂))
The subformula q̂ rules out the given invalid state

transition and is returned by the specification infer-
ence routine to be merged with the old specification of
p. The specification generated in this way is context-
dependent, i.e. it only encodes those parts of p that are
relevant to the found counterexample. The rest of the
procedure is still abstracted and, therefore, new frame
conditions are computed for it.

5. Implementation

In this section we explain our particular instantia-
tion of the proposed framework.

Inputs: We assume that the input program is in
Java. It is automatically finitized by unrolling the loops
and bounding the depth of recursive calls to some cer-
tain number provided by the user. Our specification
language is Alloy[14] which is a first order relational
logic that provides transitive closure operators, mak-
ing it well suited for expressing structural properties.

Abstraction: In this phase, an Alloy specification
is inferred for each procedure call. Since Alloy is a
declarative language with no mutations, variables and
fields are renamed whenever their values are updated.
This technique was previously used in Jalloy[15].

Translation: In this phase, the abstract program,
which is a combination of Java statements and Alloy
formulas, is converted into a boolean formula. This
is done in two steps: (1) The Java parts are trans-
lated into Alloy as explained in detail elsewhere[21].
In this translation, each control point in the Java pro-
gram is encoded as a boolean Alloy variable. Java ob-
jects are encoded as Alloy variables and Java fields are
encoded as Alloy relations. (2) The generated Alloy
formula is then conjoined with the Alloy parts of the
abstract program and is converted into a boolean for-
mula using the Alloy compiler[13]. This translation is
sound. However, since first order logic is undecidable,
the translation is done in a finite scope– a user-provided
finite bound on the number of objects in the heap. The
translation is complete within the given scope.

Solving: The Alloy assertion provided by the user
is negated and converted to a boolean formula, again
using the Alloy compiler. It is then conjoined with
the formula encoding the abstract program. Any SAT
solver can be used as a constraint solver to find a sat-
isfying solution for this formula. We use ZChaff[17] in
our implementation. A solution is an assignment of

7

truth values to all boolean variables in the formula so
that the whole formula becomes true. The control flow
variables assigned the value true represent an abstract
trace. Values of variables and relations in each state of
the program can be inferred from the solution.

Validity Check: In order to check the validity of an
abstract trace, again we use ZChaff since it is capable
of generating a proof of unsatisfiability called an un-
sat core[22]. To check the validity of a state transition
at a call point, the boolean values representing those
states are conjoined with the translation of the body
of the corresponding procedure. If the resulting for-
mula is satisfiable, an execution of the procedure can
be extracted from the solution as in the previous phase.

Spec Inference: If no solution is found during the
validity check of a procedure, ZChaff generates an un-
sat core. The input of ZChaff is a boolean formula in
conjunctive normal form (CNF). A CNF formula is a
conjunction of a set of clauses that are disjunctions of
some literals. An unsat core is also in CNF format. It
gives an unsatisfiable subset of the clauses in the input
formula. The clauses that encode program statements
in the unsat core are extracted by comparing the un-
sat core against the CNF formula encoding the pre and
post states as explained before. These clauses form a
CNF formula that is then translated back to Alloy us-
ing a technique described in a previous paper[19]. The
resulting Alloy formula is a new specification that is
conjoined with the previous specification of the proce-
dure to constitute a more detailed specification.

6. Experiments

We applied our method to check some properties
of the code given in Figure 10. The code is inspired
by our own implementation of the framework and has
extensive structural manipulations.

The code defines two linked lists, NodeList and
EdgeList, as subclasses of the data type List . Their
main function is removeAll which removes all the el-
ements of the given list from the receiver object. A
directed Graph structure is defined using lists of nodes
and edges. The sets of incoming and outgoing edges of
each node are represented by inEdges and outEdges

fields in NodeListElem. In the remove function of the
Graph class, the given list of nodes is deleted from the
graph by removing it from the nodes list and removing
all of the edges adjacent to any of those nodes from the
edges list.

Figure 11 shows some of the properties checked in
this code, expressed in Alloy. In these properties, a
primed field gives the value of the field after the func-
tion is executed whereas an unprimed one gives the

class ListElem {

int id;

ListElem next; }

class List {

ListElem first;

void removeAll(List l) {

ListElem e1 = first;

ListElem prev = null;

while (e1 != null) {

int id = e1.id;

if (l != null && l.contains(id)) {

if (prev != null)

prev.next = e1.next;

else

first = e1.next;

} else

prev = e1;

e1 = e1.next;

}}

boolean contains(int id) {

ListElem e = first;

while (e != null) {

if (e.id == id)

return true;

e = e.next;

} return false;

}}

class EdgeListElem extends ListElem {

EdgeListElem next; }

class NodeListElem extends ListElem {

EdgeList outEdges;

EdgeList inEdges;

NodeListElem next; }

class EdgeList extends List {

EdgeListElem first; }

class NodeList extends List {

NodeListElem first; }

public class Graph {

EdgeList edges;

NodeList nodes;

void remove(NodeList nl) {

NodeList nds = nodes;

nds.removeAll(nl);

NodeListElem n = nl.first;

EdgeList el = edges;

while (n != null) {

EdgeList e = n.outEdges;

el.removeAll(e);

e = n.inEdges;

el.removeAll(e);

n = n.next;

}

}}

Figure 10. Graph Manipulation Code

8

/** subset: List.RemoveAll **/

this.first’.*next’ in this.first.*next

/** sameEdges: Graph.remove **/

no nl.first =>

edges.first’.*next’ = edges.first.*next

/** sameNodes: Graph.remove **/

no nl.first =>

nodes.first’.*next’ = nodes.first.*next

Figure 11. Graph Manipulation Properties

value before the execution. The * sign in Alloy de-
notes the reflexive transitive closure, i.e. it gives all
the values reachable by traversing the field following it
zero or more times. Furthermore, this stands for the
receiver object of a function.

The subset property is a specification for the
List.RemoveAll function. The property asserts that
the elements of a list after the execution of this
function are a subset of its elements before the ex-
ecution. In other words, the removeAll function
does not add new objects to the receiver list. The
sameEdges and sameNodes properties are assertions for
the Graph.remove function. They claim that if the in-
put list of nodes is empty, the graph’s lists of edges and
nodes do not change by executing this function.

We compare our method with a static bug detector,
Jalloy[15], since it is also based on SAT solvers and
targets structural properties of Java code. The trans-
lation method used in Jalloy is identical to ours. Fur-
thermore, we tailored Jalloy to use the same SAT solver
as we do, i.e. ZChaff. However, Jalloy inlines all pro-
cedure calls to avoid user-provided specifications. This
comparison therefore, shows the improvements gained
by the procedure abstraction idea.

Table 1 gives the results of checking the above prop-
erties. They all hold in the given code. LoopUnroll
and Scope respectively show the number of times the
loops are unwound and the number of objects of each
type considered in the analyses. The number of vari-
ables and clauses given for Jalloy denote the size of the
generated boolean formula in CNF format; the time
column gives the analysis time. The number of vari-
ables and clauses for our method correspond to the
largest boolean formula checked, i.e. the formula con-
structed after the last refinement. The time column
gives the total analysis time including all refinements.
The number of iterations shows how many refinements
are needed to check each property.

The results show that to check the first two as-
sertions, the initial specifications that only preserve
the frame conditions are sufficient; no further refine-
ments are needed. Jalloy spends considerable time on

translating the whole code into a boolean formula al-
though only a small portion of code is involved in each
of these properties. Consequently, the formula gener-
ated by Jalloy is too large to be handled by the SAT
solver. These experiments show that our method con-
siderably improves the analysis time, even when some
refinements are needed, by translating only the parts
of the code that are necessary for the analysis. In this
way both the translation time is reduced and a smaller
boolean formula is generated that can be solved faster.

7. Related Work

Our method is inspired by previous work [15] and
[20] that translate a program to a boolean formula
and use a SAT solver to check a property in a finite
scope. However, they inline all called procedures that
are not annotated with user-provided specifications.
This severely limits their scalability as our experiments
indicate.

The software model checkers SLAM[1] and
BLAST[12] over-approximate the code using predicate
abstraction[10]. An abstraction is refined by automat-
ically inferring new predicates. They target temporal
safety properties, and in general are not capable of
checking the kind of structural properties that we
do. MAGIC[2] is also based on predicate abstraction,
but it uses a SAT solver to verify a user-provided
specification in C code. However, if the user does
not provide specifications for the called procedures,
MAGIC will inline all procedure calls.

ESC/Java[9] uses a theorem prover to check proper-
ties of code relying on user-provided function specifica-
tions. An extension of ESC is proposed by Flanagan[7].
His method checks code properties via translation to a
constraint logic (CLP)[16] and checking the satisfiabil-
ity of the generated formula. It differs from our method
in that it first translates the whole code into CLP and
then checks for satisfiability iteratively based on pred-
icate abstraction. We believe that our analysis frame-
work can be used with CLP and a proof-generating
decision procedure or a theorem prover like Verifun[8].

Bandera[4] analyzes Java code by extracting a finite
state model of code, using slicing, which can be mapped
into several model checkers and theorem provers. Un-
like our method, it supports user-provided data ab-
stractions that may also yield false alarms.

Dynamic slicing (e.g. [23]) extracts the statements
contributing to the value of a variable at some point in
a given execution of a program. Our specification in-
ference method is similar in that it extracts the state-
ments relevant to the input and output values assigned
to a procedure. However, since the execution path is
not known, dynamic slicing can not be applied.

9

Table 1. Experiment Results
Jalloy Our Method

Assertion LoopUnroll Scope Variables Clauses Time (sec) Variables Clauses Time (sec) #iter
subset 4 4 8216 18124 15 4928 10260 9 0

5 5 14555 34704 162 8611 19002 98
6 4 13554 30555 40 6702 14013 12
6 5 18137 43760 234 9857 21776 83

sameEdges 3 3 27112 56241 61 3284 6589 5 0
4 4 66566 151323 164 6187 13507 8
4 5 87710 214959 206 9524 23383 27
5 4 − − > 900 6807 14794 8
5 5 − − > 900 10346 25263 36
6 4 − − > 900 7499 16207 9

sameNodes 3 3 27147 56298 44 5927 11652 7 3
4 4 66661 151489 123 11057 23450 13
4 5 87803 215129 224 15682 36890 107
5 4 108016 246914 359 13075 27446 17
5 5 141087 347466 586 18549 42948 191

Shape analysis algorithms[18] can check properties
about the structure of the heap. Parametric shape
analysis[18] uses a 3-valued logic to represent shape
graphs and can prove properties without bounds, but
it may generate false alarms. It also requires the user
to specify how each statement affects each predicate of
interest. Our method, in contrast, does not require any
user-provided annotations and does not give spurious
counterexamples. However, the absence of a counterex-
ample does not constitute proof.

Specification extraction is itself not new. Daikon[6]
and DIDUCE[11], for example, detect invariants about
programs. Unlike our static specification inference
method, both of these tools detect invariants dynam-
ically, i.e. by running the code. However, we do not
generate general specifications. Our specifications are
context-dependent, i.e. based on the property to be
checked and on the context in which procedures are
called. Furthermore, our specifications are only as pre-
cise as they need to be for the verification of their
callers.

8. Conclusions

In this paper we proposed a framework to statically
check a user-provided property in code. We specifically
target the properties that constrain the structure of the
objects in the heap. The framework exploits the modu-
lar structure of the program and is based on constraint
solving. We start with a rough over-approximate spec-
ification for each procedure and refine it on-demand.
While our method is capable of automatically inferring
context-dependent specifications for procedure calls, it

can still benefit from user-provided specifications, if
available, to reduce the analysis time.

We also explained our implementation of the frame-
work. We target Java programs and use Alloy as an
intermediate language to translate Java to boolean con-
straints. A SAT solver is used to check the prop-
erty. Specification inference is based on the unsat core
generated by the SAT solver. Our experiments show
that procedure abstraction can considerably reduce the
analysis time by analyzing only the parts of the code
that are actually needed to check a property. More ex-
periments has yet to be done to evaluate this idea in
larger code.

Our current implementation checks the validity of
the procedure calls in a given trace in the depth first
traversal order of the call graph of the program. Other
orders such as breadth first, are possible. More exper-
iments will be done to compare these methods. Fur-
thermore, our initial abstraction currently infers initial
specifications that only preserve the frame conditions
of the procedures. A more precise initial specification
can reduce the number of refinements needed. Tech-
niques to obtain such specifications will be studied in
future.

References

[1] T. Ball and S. K. Rajamani. The SLAM project:
Debugging system software via static analysis.
Proc. POPL 2002, January 2002.

[2] S. Chaki, E. Clarke, A. Groce, S. Jha, and
H. Veith. Modular verification of software compo-

10

nents in C. International Conference on Software
Engineering, May 2003.

[3] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and
H. Veith. Counterexample-guided abstraction re-
finement. Proc. Computer Aided Verification,
pages 154–169, 2000.

[4] J. C. Corbett, M. B. Dwyer, J. Hatcliff,
S. Laubach, C. S. Pasareanu, Robby, and
H. Zheng. Bandera: Extracting finite-state models
from java source code. Proc. International Con-
ference on Software Engineering, June 2000.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to algorithms. MIT Press, 1990.

[6] M. D. Ernst, J. Cockrell, W. G. Griswold, and
D. Notkin. Dynamically discovering likely pro-
gram invariants to support program evolution.
IEEE Trans. on Software Engineering, 27(2),
February 2001.

[7] C. Flanagan. Software model checking via it-
erative abstraction refinement of constraint logic
queries. Workshop on Constraint Programming
and Constraints for Verification, March 2004.

[8] C. Flanagan, R. Joshi, X. Ou, and J. B. Saxe. The-
orem proving using lazy proff explication. Interna-
tion Conference on Computer Aided Verification,
2003.

[9] C. Flanagan, K. Leino, M. Lillibridge, G. Nelson,
J. Saxe, and R. Stata. Extended static checking for
java. Proc. Conference on Programming Language
Design and Implementation, pages 234–245, June
2002.

[10] S. Graf and H. Saidi. Construction of abstract
state graphs via PVS. International Conference on
Computer Aided Verification, pages 72–83, 1997.

[11] S. Hangal and M. S. Lam. Tracking down software
bugs using automatic anomaly detection. Proc. In-
ternational Conference on Software Engineering,
pages 291–301, May 2002.

[12] T. A. Henzinger, R. Jhala, R. Majumdar, G. Nec-
ula, G. Sutre, and W. Weimer. Temporal-safety
proofs for systems code. Proc. International Con-
ference on Computer-Aided Verification, pages
526–538, 2002.

[13] D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa:
The alloy constraint analyzer. Proc. International
Conference on Software Engineering, June 2000.

[14] D. Jackson, I. Shlyakhter, and M. Sridharan. A
micromodularity mechanism. Proc. ACM SIG-
SOFT Conference on Foundations of Software En-
gineering, 2001.

[15] D. Jackson and M. Vaziri. Finding bugs with a
constraint solver. Proc. International Conference
on Software Testing and Analysis, August 2000.

[16] J. Jaffar and M. J. Maher. Constraint logic pro-
graming: A survey. Journal of Logic Program-
ming, 19(20):503–581, 1994.

[17] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang,
and S. Malik. Chaff: Engineering an efficient SAT
solver. Design Automation Conference, June 2001.

[18] M. Sagiv, T. Reps, and R. Wilhelm. Parametric
shape analysis via 3-valued logic. ACM Trans. on
Programming Languages and Systems, 24(3):217–
298, 2002.

[19] I. Shlyakhter, R. Seater, D. Jackson, M. Sridha-
ran, and M. Taghdiri. Debugging declarative mod-
els using unsatisfiable core. Automated Software
Engineering, October 2003.

[20] M. Sitaraman, D. P. Gandi, W. Kuchlin, C. Sinz,
and B. W. Weide. The humane bugfinder: Mod-
ular static analysis using a sat solver. Technical
Report RSRG-03-05, Dept. of Computer Science,
Clemson Univ., June 2003.

[21] M. Vaziri. Finding bugs in software with a con-
straint solver. Ph.D Thesis, MIT, February 2004.

[22] L. Zhang and S. Malik. Validating SAT solvers
using an independent resolution-based checker:
Practical implementations and other applications.
Design, Automation and Test in Europe(DATE),
2003.

[23] X. Zhang, R. Gupta, and Y. Zhang. Precise dy-
namic slicing algorithms. Proc. International Con-
ference on Software Engineering, pages 319–329,
2003.

11

