
Test-Suite Reduction for Model Based Tests:
Effects on Test Quality and Implications for Testing

Mats P.E. Heimdahl and Devaraj George

Department of Computer Science and Engineering, University of Minnesota
E-mail: {heimdahl,devaraj }@cs.umn.edu

Abstract

Model checking techniques can be successfully employed
as a test case generation technique to generate tests from
formal models. The number of tests cases produced, how-
ever, is typically large for complex coverage criteria such as
MCDC. Test-suite reduction can provide us with a smaller
set of test cases that preserve the original coverage—often a
dramatically smaller set. One potential drawback with test-
suite reduction is that this might affect the quality of the test-
suite in terms of fault finding. Previous empirical studies
provide conflicting evidence on this issue. To further inves-
tigate the problem and determine its effect when testing for-
mal models of software, we performed an experiment using
a large case example of a Flight Guidance System, gener-
ated reduced test-suites for a variety of structural coverage
criteria while preserving coverage, and recorded their fault
finding effectiveness. Our results show that the size of the
specification based test-suites can be dramatically reduced
and that the fault detection of the reduced test-suites is ad-
versely affected. In this report we describe our experiment,
analyze the results, and discuss the implications for testing
based on formal specifications.

Keywords: specification-based testing, test reduction,
fault finding, model checkers, automated test generation

1 Introduction

In model-based development, the development effort is
centered around a formal description of the proposed soft-
ware system. The main ideas behind model-based devel-
opment is that through manual inspections, formal verifica-
tion, and simulation and testing we convince ourselves (and
any regulatory agencies) that the software specification pos-
sesses desired properties. The implementation is then auto-
matically generated from this specification and, in theory,
little or no additional testing of the implementation is re-
quired.

With the use of formal models comes the ability to auto-
matically generate specification based tests from the mod-
els. This capability may be used to generate large numbers
of tests to use asconformance teststo provide assurance that
the generated code is correct with respect to the specifica-
tion from which it was generated. This type of conformance
testing will most likely be required since it is unlikely that
regulatory agencies will trust a complex code generation
tool. For example, we may generate test-suites that provide
MC/DC coverage of the formal model, execute the tests on
the generated code, and show that the specification and code
behave equivalently for this test-suite—an argument for the
correctness of the translation that may be accepted by a reg-
ulatory agency.

The cost of generating, executing, storing, and maintain-
ing these test-suites can be reduced throughtest-suite re-
duction techniques. Test-suite reduction aims to remove (or
not generate at all) test-cases from a test-suite in such a way
that “redundant” test-cases are eliminated. For example, a
reduced test-suiteTR may provide the same structural cov-
erage as a test-suiteT with significantly fewer test-cases.
Previous studies conducted on C code have shown that test-
suite reduction techniques significantly reduce the number
of test-cases in a test-suite while maintaining the structural
coverage of the original suite [34, 35, 30, 24]. The effect
on thefault findingcapability of the reduced test-suites is,
however, unclear and the studies show conflicting evidence.
Wonget al.[34, 35] found no significant effect in fault find-
ing ability between the full suites and the reduced suites. On
the other hand, Rothermelet al. [30] and Jones and Harrold
[24] showed that the reduced test-suites can be dramatically
worse with respect to fault finding.

To investigate the effect of test-suite reduction in the do-
main of automatically generated conformance test-suites,
we conducted an experiment where we compared the test-
suite size and fault finding capability of reduced test-suites
generated to six different specification test-adequacy crite-
ria. As a system-under-test, we used a model of a pro-
duction sized Flight Guidance System (FGS) provided by
Rockwell Collins Inc. in which we seeded “representative”



faults; faults we had observed during the development of
the FGS model.

Our results show that one can dramatically reduce
our automatically generated conformance test-suites while
maintaining desired coverage. We also found that the fault
finding of these reduced test-suites was adversely affected,
and that the reduction is quite significant in the domain of
specification based testing. Although further studies are
needed, the results indicate that test-suite reduction may not
be an effective means of reducing testing effort—the cost in
terms of loss in fault finding capability is too high.

In the remainder of the paper we review relevant litera-
ture, describe our experimental set up, results obtained, and
draw conclusions from the results.

2 Background and Related Work

To put our current work in context it is necessary to pro-
vide information regarding related studies as well as the do-
main in which we performed our work. We will briefly dis-
cuss the approach to testing made possible when working
with formal models and automatic test case generators. We
will then cover the most closely related test-suite reduction
experiments and contrast them with the study presented in
this report.

2.1 Model-Based Development

As mentioned in the introduction, in the embedded sys-
tems community, there is a trend towardsmodel-based[3,
33] (or specification based) development. In model-based
development, the development effort is centered around a
formal description of the proposed software system. For
validation and verification purposes, thisformal specifica-
tion can then be subjected to various types of analysis, for
example, completeness and consistency analysis [19, 21]
model checking [14, 6, 7, 22, 9], theorem proving [1, 2],
and test case generation [5, 13, 10, 4, 27, 23, 29]. Through
manual inspections, formal verification, and simulation and
testing we convince ourselves (and any regulatory agen-
cies) that the software specification possesses desired prop-
erties. The implementation is then automatically generated
from this specification. There are currently several com-
mercial and research tools that attempt to provide these
capabilities—commercial tools are, for example, Esterel
and SCADE from Esterel Technologies, Statemate from i-
Logix [15], and SpecTRM from Safeware Engineering [26];
and examples of research tool are SCR [20], RSML−e [33],
and Ptolemy [25].

The capabilities of model-based development allows us
to follow a process outlined in Figure 1. The testing effort
has in this process been largely moved from unit testing of
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Figure 1. Specification Centered Develop-
ment Process.

the code to functional testing of the formal model. In ad-
dition, there is a need to perform conformance testing to
assure that the generated code is behaviorally equivalent to
the specification—a task ideally suited for automatic test
case generation from the formal specification. Test-suites
generated for this purpose are the focus of our study.

2.2 Test Cases and Model Checkers

Model checkers build a finite state transition system and
exhaustively explore the reachable state space searching for
violations of the properties under investigation [9]. Should a
property violation be detected, the model checker will pro-
duce a counter-example illustrating how this violation can
take place. In short, a counter-example is a sequence of in-
puts that will take the finite state model from its initial state
to a state where the violation occurs.

A model checker can be used to find test cases by for-
mulating a test criterion as a verification condition for the
model checker. For example, we may want to test a tran-
sition (guarded with conditionC) between statesA andB
in the formal model. We can formulate a condition describ-
ing a test case testing this transition—the sequence of in-
puts must take the model to stateA; in stateA, C must be
true, and the next state must beB. This is a property ex-
pressible in the logics used in common model checkers, for
example, the logic LTL. We can now challenge the model
checker to find a way of getting to such a state by negating
the property (saying that we assert that there is no such in-
put sequence) and start verification. We call such a property
a trap property[13]. The model checker will now search
for a counterexample demonstrating that this trap property
is, in fact, satisfiable; such a counterexample constitutes a
test case that will exercise the transition of interest. By re-
peating this process for each transition in the formal model,
we use the model checker to automatically derive test se-
quences that will give us transition coverage of the model.
This general approach can be used to generate tests for a



wide variety of structural coverage criteria, such as all state
variables have taken on every value, and all decisions in the
model have evaluated to both true and false, etc.

In a previous project, we developed a framework where
one can generate test suites to satisfy a wide variety of
specification-coverage criteria [29, 18]. This is the tech-
nique and tools infrastructure we have used to generate the
test suites used in our experiment.

2.3 Previous Test-Reduction Experiments

Several studies have investigated the effect of test-set re-
duction on the size and fault finding capability of a test-set.
In an early study, Wonget al. address the question of the ef-
fect on fault detection of reducing the size of a test set while
holding coverage constant [34, 35]. Their experiments were
carried out over a set of commonly used UNIX utilities im-
plemented in C. These programs were manually seeded with
faults, producing variant programs each of which contained
a single fault. They randomly generated a large collection
of test sets that achieved block and all-uses data flow cover-
age for each subject program. For each test set they created
a minimal subset that preserved the coverage of the original
set. They then compared the fault finding capability of the
reduced test-set to that of the original set. Their data shows
that test minimization keeping coverage constant results in
little or no reduction in its fault detection effectiveness. This
observation leads to the conclusion that test cases that do not
contribute to additional coverage are likely to be ineffective
in detecting additional faults.

To confirm or refute the results in the Wong study,
Rothermelet al. performed a similar experiment using
seven sets of C programs with manually seeded faults [30].
For their experiment they used edge-coverage [11] adequate
test suites containing redundant tests and compared the fault
finding of the reduced sets to the full test sets. In this exper-
iment, they found that (1) the fault-finding capability was
significantly compromised when the test-sets were reduced
and (2) there was little correlation between test-set size and
fault finding capability. The results of the Rothermel study
were also observed by Jones and Harrold in a similar exper-
iment [24].

These radically different results are difficult to reconcile
and the relationship between coverage criteria, test-suite
size, and fault finding capability clearly needs more study.

In the experiment discussed in this paper we attempt to
shed some additional light on this issue. Our work is dif-
ferent in some respects, however. First, we are not studying
testing of traditional programs, we are interested in test-case
generation and testing of formal specifications. In partic-
ular, formal specifications expressed in synchronous data-
flow languages commonly used in model-based develop-
ment, for example, Esterel, SCADE, SpecTRM, SCR, and

RSML−e.
Second, we are addressing a wide spectrum of coverage

criteria ranging from the very weak, for example, transi-
tion coverage, to the very strong, for example MCDC. The
previous experiments addressed either rather weak criteria
such as block-coverage [35] or used test-suites that did not
fully provide the desired strong coverage [24]. This issue
will be further addressed in the discussion of our results.

These differences makes a direct comparison of our re-
sults with related work difficult, but our findings seem to re-
inforce the observations in the Rothermelet al., and Jones
and Harrold studies; although test-suite reduction can dra-
matically reduce the size of a test-suite without affecting
coverage, test-suite reduction has a detrimental effect on the
test-suite’s fault finding capability.

3 The Experiment

To investigate the relationship between test reduction
and fault finding capability in the domain of model based
tests, we designed our experiment to test two hypotheses:

Hypothesis 1: Test reduction of a naively generated spec-
ification based test-set can produce significant savings
in terms of test-set size.

Hypothesis 2: Test reduction will adversely affect the fault
finding capability of the resulting test set.

We formulated our hypotheses based on two informal
observations. First, in a previous study we got an indica-
tion that one could achieve equivalent transition and state
coverage with approximately 10% of the full test-set gen-
erated [18], we believe this generalizes to other criteria as
well. (A discussion of the various specification coverage
criteria will follow in Section 3.4 below.) Second, intu-
itively, more tests-cases ought to reveal more faults. Only
an extraordinarily good test adequacy criterion would pro-
vide a fault finding capability that is immune to variations
in test-suite size, and we speculate that none of the known
coverage criteria posses this property.

3.1 Experimental setup

In our experiment, the aim was to determine how well a
test-suite generated to provide a certain structural or condi-
tion based coverage reveals faults as compared to a reduced
test-suite providing the same coverage. To provide realistic
results, we conducted the experiment using a close to pro-
duction model of a flight guidance system from Rockwell
Collins Inc.1

1We thank Dr. Steve Miller and Dr. Alan Tribble of Rockwell Collins
Inc. for the information on flight control systems and for letting us use the
RSML−e models they have developed usingNIMBUS.



We conducted the experiment through the the steps out-
lined below. Each step is elaborated in detail in the follow-
ing sections.

1. We used the original FGS specification to generate
test-suites to various coverage criteria of interest, for
example, transition coverage or MC/DC. Note here
that we did this näıvely in that we generated a test-
casefor eachconstruct we needed to cover. Thus, the
test-suites were straight forward to generate, but they
were also highly redundant.

2. We generated 100 faulty specifications of the FGS by
randomly seeding one fault per faulty specification.
The fault classes we seeded are discussed in Section
3.3.

3. We ran the full (non-reduced) test suite on the 100
faulty specifications and recorded the number of faults
revealed.

4. We generated and ran five reduced test suites for each
full test-suite, ensuring that the desired coverage crite-
rion was maintained. As discussed below, we gener-
ated five reduced sets for each full test-suite to avoid
skewing our results because we were lucky (or un-
lucky) in the selection of tests for a reduced test-suite.

5. Given the results of the previous steps, we compared
the relative fault finding capability of the full test-
suites versus the reduced test-suites.

In the remainder of this paper we provide a detailed de-
scription of activities involved in the experiment and discuss
our findings.

3.2 Case Example: The FGS

A Flight Guidance System (FGS) is a component of the
overall Flight Control System (FCS) in a commercial air-
craft. The FGS was developed using the RSML−elanguage.
It compares the measured state of an aircraft (position,
speed, and altitude) to the desired state and generate pitch
and roll guidance commands to minimize the difference be-
tween the measured and desired state. The FGS can be bro-
ken down to mode logic, which determines which lateral
and vertical modes of operation are active and armed at any
given time, and the flight control laws that accept informa-
tion about the aircraft’s current and desired state and com-
pute the pitch and roll guidance commands. In this case
study we have used the mode logic.

Figure 2 illustrates a graphical view of a FGS in the
NIMBUS environment. The primary modes of interest in
the FGS are the horizontal and vertical modes. The hori-
zontal modes control the behavior of the aircraft about the
longitudinal, or roll, axis, while the vertical modes control
the behavior of the aircraft about the vertical, or pitch, axis.
In addition, there are a number of auxiliary modes, such as

Figure 2. Flight Guidance System

half-bank mode, that control other aspects of the aircraft’s
behavior.

The FGS mode-logic model we have used in the exper-
iment is production sized, but does not represent any ac-
tual Rockwell Collins product. The model consists of 2564
lines of code in RSML−eand consists of 142 state variables.
When translated to SMV it consists of 2902 lines of code
and required 849 BDD variables for encoding in NuSMV.
The FGS is ideally suited for test case generation using
model checkers since it is discrete—the mode logic consists
entirely of enumerated and Boolean variables.

3.3 Fault Injection and Detection

To provide targets for our testing effort, we created a col-
lection of faulty specifications. To create the faulty speci-
fications, we first reviewed the revision history of the FGS
model to understand what types of faults were removed dur-
ing the original development and verification process. We
then implemented a random fault seeder to inject represen-
tative faults to create a suite of faulty specifications. The
faults that we identified as common mistakes during the
FGS development effort and then implemented in the fault-
seeder fall into the following four categories:

Variable Replacement (VR): A variable reference was re-
placed with a reference to another variable of the same



type.
Condition Insertion (CI): A condition that was previ-

ously considered a “don’t care” (*) in one of the tables
was changed to T (the condition is required to be true).

Condition Removal (CR): A condition that was previ-
ously required to be true (T) or false (F) in a table was
changed to “don’t care” (*).

Condition Negation (CN): A condition that was previ-
ously required to be true (T) in a table was changed
to false (F), or vice versa.

We used our fault seeder to generate 100 faulty specifi-
cations (25 for each fault class).

During our testing experiment, we used an quite sensitive
oracle to determine if a test-case revealed a fault. Given the
input sequence of a test-case, we compared both the gen-
erated output as well as the internal state of the model to
determine if a fault was present. Thus, our oracle was able
to detect faults that may not have manifested themselves as
erroneous outputs, but only as a corrupt model state. We
chose this approach since we expect this to be the type of
oracle used when performing conformance testing of auto-
generated code.

3.4 Specification Based Test Criteria

Adequacy criteria are used by testers to decide when to
stop testing by helping them determine if the software has
been adequately tested. In this paper, these criteria are de-
fined on a synchronous data-flow specification language.
We are using the specification language RSML−e [33]in our
study, but the criteria are applicable without modification to
a broad class of languages. An RSML−e model consists of
state variables and a next state relation for these state vari-
ables (this can be viewed as state machines with transitions
between the states). The next state relation defines under
which conditions the state variables change value (the state
machines changes state), and are given in terms of Boolean
expressions involving variables and arithmetic, relational,
or boolean operators.

We useΓ to represent a test-suite andΣ for the formal
model. In the following definitions, atest-caseis to be
understood as a sequence of values for the input variables
in the modelΣ and the expected outputs and state changes
caused by these inputs. The sequence of inputs will guideΣ
from its initial state to the structural element, for example, a
transition, the test-case was designed to cover. Atest-suite
is simply a set of such test cases. In this paper we use the
following six specification coverage criteria. Note that for
the condition based coverage criteria, aconditionis defined
as a Boolean expression that contains no Boolean operators
and adecisionis Boolean expression consisting of condi-
tions and zero or more Boolean operators.

Variable Domain Coverage: (Often referred to as state-
coverage.) Requires that the test setΓ has test-cases
that enable each control variable defined in the model
Σ to take on all possible values in its domain at least
once.

Transition Coverage: Analogous to the notion of branch
coverage in code and requires that the test setΓ has
test-cases that exercise every transition definition inΣ
at least once.

Decision Coverage:Each decision occurring inΣ evalu-
ates to true at some point in some test-case and eval-
uates to false at some point in some other test case.
Note that if the decision is, for example, in a function,
there is no requirement that the function is actually
invoked—this criterion only requires that the decision
would have evaluated to true/false if it was evaluated
during the test case.

Decision Coverage with Single Uses:Analogous to deci-
sion coverage, but the decision must actually be eval-
uated. For example, for a condition in a function, the
condition must evaluate to true/false while the function
is invoked from some point in the model.

Modified Condition and Decision Coverage (MCDC):
Every condition within the decision has taken on all
possible outcomes at least once, and every condition
has been shown to independently affect the decision’s
outcome. Note again that invocation of the decision is
not required.

MCDC with Single Uses: Analogous to modified condi-
tion and decision coverage, but the decision must actu-
ally be evaluated.

The reader may wonder why we have included the cov-
erage criteria that do not require that decisions are actually
evaluated. These criteria are included because there is no
consensus if the definitions of the coverage criteria in, for
example, DO-178B [31], require the decisions to be eval-
uated or not. A more formal treatment of these coverage
criteria can be found in in [28, 29] and [16, 32].

3.5 Test Set Generation and Reduction

We generated full test-suites using the approach dis-
cussed in Section 2.2. We used theNIMBUS tool-set (an ex-
ecution and analysis environment for RSML−e) to translate
to the input language of NuSMV [8] and also to generate
the trap properties corresponding to the test coverage crite-
ria discussed above. The model and the trap properties are
then given to the NuSMV tool to create the full test-suites.

A single test-case in most cases may satisfy more than
one test obligation. For instance, a test-case used to cover
a certain state of interest may also cover other states during
its execution. This then provides for a way to reduce the



Algorithm 3.1: TEST-REDUCE(Σ,Γ, η)

INPUTS :
Model Σ, test suite Γ,and test criterion η

OUTPUT :
Reduced test set Ω

Ω ← ∅; ReducedTest set
AC ← 0; Actual Coverage
PC ← 0; Previous Coverage
shuffle(Γ);
repeat
choose a test case f from Γ ;
run f against the model Σ ;
Measure actual coverage AC ;
if AC 6= PC

then Ω ← Ω ∪ {f};
PC ← AC;

until Γ is exhausted
return (Ω);

Figure 3. Algorithm for test-suite reduction.

size of the final test-suite by choosing a subset of test-cases
that preserves the coverage obtained by the full test-suite.

Finding a minimal test-suite that satisfies the test re-
quirements is in general a NP problem [12], but often
greedy heuristics suffice to generate significantly reduced
test-suites. The method we use begins with an empty set
of test cases and initializes the coverage to zero (Figure 3).
The greedy algorithm then randomly picks a test-case from
the full test-suite, runs the test, and determines if the test-
case improved the overall coverage (for whatever criterion
in which we are interested). Any test-case that improves the
coverage is added to the reduced set. This continues until
we have exhausted all the test-cases in the full test-suite—
we now have a, hopefully, much smaller suite that has the
same coverage as the full test-suite.

Note that we randomly select test-cases from the full set
to create a reduced test-suite. We then generate five sepa-
rate reduced test-suites for each full test-suite. We choose
this approach to reduce problems related to skewing the re-
sults by accidentally picking a “very good” (or bad) set of
test-cases. The results for all test runs are included in this
report.

4 Experimental Results and Analysis

As a baseline for our experiments, we ran the full test-
suites as well as a randomly generated sets-set. The results
are summarized in Table 1. The table shows the number of
test-cases in each test-suite and their fault finding capability
(total fault finding capability as well as broken down per

fault-class).
There are several things worth noting about Table 1.

First, we did not attempt to eliminate specifications where
the seeded fault did not yield a behaviorally different spec-
ification. Thus, the numbers do not say anything about
the absolute fault finding capabilityof the various cover-
age criteria; we can only evaluate therelative fault finding
capability. Nevertheless, to get a basic idea of the fault
finding capability of the test-suites designed to provide the
various structural coverage, we also created a collection of
randomly generated tests. We expended approximately the
same amount of time automatically generating and running
the random tests as we did running the tests providing tran-
sition coverage. Thus, the randomly generated tests serve
as a simple baseline for the other test suites; one would ex-
pect the tests carefully crafted to provide a certain cover-
age to perform better than the randomly generated test-set.
As can be seen in Table 1, the randomly generated test per-
form surprisingly well compared to the test-suites providing
structural coverage. We have discussed the reasons behind
the poor performance of Variable Domain and Transition
Coverage in a previous study [17] and a discussion of this
topic is outside the scope of this paper.

From the results in Table 1 one can also observe that the
more rigorous the test criteria, the better the fault finding
capability. For instance, MCDC with usage detects more
faults (72%) than any other coverage criteria considered and
also outperforms random testing (66%).

4.1 Test-Suite Reduction

As mentioned earlier, we generated five different re-
duced test-suites to control the possibility that we by chance
got a very “good” or very “poor” reduced test-suite. The re-
sults of the reduction algorithm can be seen in Table 2.

The results support our first hypothesis that test reduc-
tion results in significant savings in terms of test-suite size.
In all cases there was at least an 80% average reduction in
the size of the test-suite. This reduction reinforces the find-
ings in [34, 35, 30, 24] and is to be expected since our
test-case generation method produces a significant number
of overlapping test-cases; we generate a separate test-case
for each construct of interest. Of more interest is the fault
finding ability of the reduced tests-suites discussed next.

4.2 Effect on Fault Detection Effective-
ness

The fault finding capability of the full as well as reduced
test-suites is summarized in Table 3. The results are in
agreement with our second hypothesis that test-suit reduc-
tion will adversely impact the fault finding ability of test-
suites that are derived from synchronous data-flow models.



Test Criteria Size VR CN CI CR Total
Random 100 21 25 5 15 66

Variable Domain 115 14 15 2 4 32
Transition 313 20 24 5 15 64
Decision 435 23 24 5 15 67

Decision Usage 478 23 24 7 15 69
MCDC 537 22 25 7 16 70

MCDC Usage 334 23 25 8 16 72

Table 1. Full test set generation for various criteria along with their fault detection capability

Criteria Full Set Run 1 Run 2 Run 3 Run 4 Run 5 Average Reduction
Variable Domain 115 19 22 18 21 21 20.2 82%

Transition 313 35 43 29 38 43 37.6 88%
Decision 435 45 44 44 45 42 44.0 90%

Decision Usage 478 37 43 47 43 38 41.6 91%
MCDC 537 34 33 29 34 32 32.4 94%

MCDC Usage 334 30 30 33 32 33 31.6 91%

Table 2. Reduced test set sizes for various test reduction runs

As shown in Table 3, the number of faults detected by
the reduced test-suites is significantly less for all coverage
criteria that were examined in our experiment; in all cases
there was at least a 7% reduction in the fault detection effec-
tiveness. One may argue that a 7% reduction is rather small,
but for our domain of interest, automated code generation in
critical systems, any reduction in fault finding ability is un-
acceptable.

From our results we can also observe that the most rig-
orous coverage criteria, MC/DC with Usage, seems to be
the least sensitive to the effect of test-suite reduction. We
speculate that this is because it is simply harder to come
up with a test-suite that provides this high level of cover-
age without finding faults–MC/DC with Usage is simply
a “better” coverage criterion than the other ones we used
in our experiment. We hypothesize that MC/DC with Us-
age is better than the other criteria in two respects. First, it
seems to find more faults than any other criteria. Second,
it seems to be less sensitive to the effect of test-suite reduc-
tion. Thus, MC/DC with Usage is the closest to theideal
coverage criterionin this domain we have seen to date; a
test-suite generated to the ideal criterion would detectall
faults in the system under test andany test-suite, large or
small, providing this coverage would reveal the same faults.

Our results are markedly different than the results re-
ported in previous studies [35, 24, 30]; one of the studies
reports no reduction in fault finding and two studies report a
dramatic and varied reduction in the fault finding capability
of the reduced test-suites. In our study we observe a modest,
but notable, reduction in the fault-finding capability. In our

experiment, however, that reduction in fault-finding seems
to be reasonablypredictable; each of the five reduced test-
suites we randomly generated for each coverage criterion
have approximately the same fault-finding capability. This
stands in stark contrast to the results in the Rothermelet al.,
and Jones and Harrold studies where the reduction in fault
finding varied between 0% and 100% [24, 30].

We do not have a ready explanation for this phenomenon,
but we speculate that it may be related to two factors; (1)
the coverage criteria used in the experiment and (2) the ac-
tual coverage provided by the test-suites. The Rothermelet
al. study [30] used edge-coverage of the control flow graph
(equivalent to the transition coverage in our domain) and
most of our criteria are more rigorous than edge-coverage.
Since there seems to be a correlation between the rigor of
the coverage criterion and the variability in fault-finding of
the reduced test-suites, this may be part of the explanation
for our results. The Jones and Harrold study [24] used
MC/DC as the coverage criterion in their experiment, but
the test-suites they used did not provide complete MC/DC
coverage. Their reduced test-suites provided thesamecov-
erage of the code as the full suite, but the full suite did not
provide coverage up to 100% of the criterion of interest.
In our case, we provided full coverage of every criterion.
The fact that we worked from complete test-suites may have
made our test suites less susceptible to the variations if fault
finding observed in their study. Needless to say, further
study is clearly needed to understand these issues better.

To summarize the findings, reduction of test-suite size
has an unacceptable effect on the suite’s fault finding capa-



Criteria Full Set Run 1 Run 2 Run 3 Run 4 Run 5 Average Reduction
Variable Domain 32 28 29 25 28 25 27.0 15.6%

Transition 64 58 58 58 59 57 58.0 9.38%
Decision 67 62 61 62 62 61 61.6 8.06%

Decision Usage 69 62 63 63 62 63 62.6 9.28%
MCDC 70 64 63 63 63 63 63.2 9.71%

MCDC Usage 72 67 66 67 67 67 66.8 7.22%

Table 3. Fault finding capability of the reduced test-sets

bility. Should there be an urgent need to reduce the test-
suite size because of resource limitations (in terms of, for
example, time), we speculate thattest-case prioritization
[24] would be a better approach than test-suite reduction
(or minimization). In test-case prioritization, we would
not eliminate any test-cases from our test-suite; we would
instead attempt tosort the test-cases based on expected
fault finding potential and execute the ones deemed to be
most likely to reveal faults first. We would terminate the
testing when our resources are depleted. Naturally, more
work is needed to determine how to prioritize test cases and
also empirically evaluate if the test-case prioritization ap-
proach in fact performs better than reduced or minimized
test-suites.

4.3 Threats to Validity

There are three obvious threats to the external validity
that prevents us from generalizing our observations. First,
and most seriously, we are using only one instance of a for-
mal model in our experiment. Although the FGS is an ideal
example—it was developed by an external industry group,
it is large, it represents a real system, and is of real world
importance—it is still only one instance. The characteris-
tics of the FGS model, for example, it is entirely modelled
using Boolean and enumerated variables, most certainly af-
fects our results and makes it impossible to generalize the
results to systems that, for example, contain numeric vari-
ables and constraints.

Second, we are using seeded faults in our experiment.
Although we took great care in selecting fault classes that
represented actual faults we observed during the develop-
ment of the FGS model, fault seeding always leads to a
threat to external validity.

Finally, we only considered a single fault per model. Us-
ing a single fault per specification makes it easier to control
the experiment. Nevertheless, we cannot account for the
more complex fault patterns that may occur in practice.

Although there are several threats to the external validity
of our experiment, we believe the results are representative
of a large class of models in the critical systems domain

and our results raise serious doubts about the use of any
test-suite reduction techniques in this domain.

5. Summary and Conclusions

We have described an experiment in which we investi-
gated the effect of test-suite reduction in the domain of auto-
matically generated conformance test-suites. As a system-
under-test, we used a model of a production sized Flight
Guidance System seeded with “representative” faults. Our
results confirm our two hypotheses; one can dramatically
reduce the automatically generated conformance test-suites
while maintaining desired coverage, and the fault finding
of the reduced test-suites was adversely affected. Although
we cannot broadly generalize our results and further stud-
ies are needed, the experiment indicates that test-suite re-
duction may not be an effective means of reducing testing
effort—the cost is terms of lost fault finding capability is
simply too high; especially in the critical systems domain
in which we are mainly interested.

Furthermore, our results indicate that more rigorous cri-
teria, such as MC/DC, provide a better fault finding capa-
bility both for the full-test suites as well as the reduced test
suites as compared to less rigorous criteria, such as variable
domain and transition coverage.

Based on our results, we are skeptical towards any test-
suite reduction techniques that aim solely to maintain struc-
tural coverage, because, in our opinion, there is an unac-
ceptable loss in terms of test-suite quality. Thus, we advo-
cate research into test-case prioritization techniques and ex-
perimental studies to determine if such techniques can more
reliably lessen the burden of the testing effort by running a
subset of an ordered test-suite as opposed to a reduced test-
suite, without loss in fault finding capability.
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