
CPPROFJ: Aspect-capable Call Path Profiling of Multi-threaded Java Applications

Robert J. Hall
AT&T Labs Research

180 Park Ave, Bldg 103
Florham Park, NJ 07932

bob-3CpprofJ02-@channels.research.att.com

Abstract

A primary goal of program performance understanding
tools is to focus the user’s attention directly on optimization
opportunities where significant cost savings may be found.
Optimization opportunities fall into (at least) three broad
categories: the call context of a general component may
obviate the need for some of its generality; cross-cutting
program aspects may be implemented suboptimally for the
particular context of use; and thread dependencies may
cause unintended delays. This paper enhances prior work
in call path profiling[5] in several ways. First, it provides
two different call path oriented views on program perfor-
mance, a server view and a thread view. The former helps
one optimize for throughput, while the latter is useful for
optimizing thread latency. The views incorporate a typed
time notation for representing different program activities,
such as monitor wait and thread preemption times. Second,
the new framework allows aspect-oriented program profil-
ing, even when the original program was not designed in
an aspect oriented fashion. Finally, the approach is im-
plemented in a tool, CPPROFJ, an aspect-capable call path
profiler for Java. It exploits recent developments in the Java
APIs to achieve accurate and portable sampling-based pro-
filing. Three case studies illustrate its use.

1. Introduction

Understanding the performance of a program is an es-
sential prerequisite to effective program optimization and
system re-engineering. One wants some assurance in ad-
vance that a proposed change to the code will result in a
significant improvement, because ineffective code changes
result in lost development and test time and risk introducing
new bugs. For complex systems, such understanding can
only come from profiling tools applied during representa-

tive runs of the system. A central goal of such tools should,
therefore, be to attribute run time costs to optimizable de-
sign decisions in the source code. The tool can then focus
the developer’s attention on the most significant optimiza-
tion opportunities first. And note that pertinent performance
information is valuable as input to other tools as well, such
as compilers and other program optimization tools.

Where, then, do we find optimization opportunities?
There are at least three broad categories of them. First, op-
timizations are often enabled by context of use. A common
case is when a general component is used in a context that
does not require its full generality, so a less general version
can be used which incurs less cost. Schematically,

Application function
--calls--> general component

--calls--> utility routine

A well known example of this is copy elimination, where
a tool can remove calls to a copy operation within a gen-
eral component, because it can prove that when the general
component is called from the context of the particular appli-
cation function, the copying is unnecessary for correctness.

Another fertile hunting ground for optimizations is the
set of design choices made in implementing abstract data
types and other cross-cutting program aspects. Such oppor-
tunities arise when some program aspect is implemented in-
adequately to handle the distribution of input cases seen by
the deployed system. For example, an abstract Set type im-
plemented as a linked list, while most appropriate for small
Sets, will not scale well to large sets, where an implementa-
tion using a hash table may work better.

Finally, a third source of performance bottlenecks in
modern applications is thread contention and other inter-
thread dependencies. For example, an input/output process-
ing thread may be stalled waiting for a thread marked with
higher priority, even though its data has arrived from the in-
put device. It can often be better to mark the i/o processor

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

as higher priority so that it can start the next read or write
before letting the more compute-bound threads continue.

Existing program performance tools, while providing a
large amount of low-level data, do not provide direct, inte-
grated support for detecting these types of optimization op-
portunities. Thus, this work automates the tedious and error
prone process of inferring useful optimization opportunities
from low level data. In this paper, I describe a new tool
for multi-threaded Java programs called CPPROFJ. It builds
conceptually on the original Call Path Profiler work[6, 5],
which showed how to directly discover costs incurred by
routines in the various call contexts in which they are used.
The novel contributions of this paper include the following.

� I extend call path profiling to handle multi-threaded
server-style Java applications through the definition of
two views: the Thread View, which profiles costs in-
curred by instances of a single thread class, and the
Server View, which profiles CPU costs of all threads.
The former is most useful for improving thread latency
(start to finish time for a thread), while the latter is
most useful for improving system throughput (thread
completions per unit time). This multi-view call path
approach supports search for the first category of opti-
mization mentioned above.

� Cross-cutting program aspects[2, 9] incur costs within
contexts as well as do program methods. The cur-
rent work allows one to define aspects after the fact
and reports costs on them in the same way as for pro-
gram methods. This is true even if the original pro-
gram is not implemented in an explicit aspect-oriented
language. This addresses the second category of opti-
mization opportunity discussed above.

� The extension to multithreaded applications necessi-
tates introduction of typed time costs. The Thread
View profiles report (a) time spent when actually run-
ning, (b) time spent sharing the CPU with equal prior-
ity threads, (c) time spent waiting while higher priority
threads are running, (d) time spent waiting for a moni-
tor, and (e) idle time waiting for other types of events.
While the notion of typed time costs is not new, its
integration with arbitrary call context is; this allows
finding costs due to inter-thread dependencies in arbi-
trarily deep contexts, addressing the third category of
optimization opportunity mentioned above.

� I extend previous work on call path refinement profiles
by defining a new refinement profile type, the upward
split refinement, which gives one the ability to work
“upwards” within an arbitrary call context from lower
level routines to find which intermediate callers are in-
curring the most cost (see Section 2).

� Finally, CPPROFJ exploits the recent development of a
debugging API for Java[8] in order to collect the raw
data, and so is portable across virtual machines.

This paper is structured as follows. The next section de-
fines call paths, their costs, and describes refinement pro-
files. These allow the user to control information display
and help guide a prioritized search for significant bottle-
necks. The following section extends call path profiling to
handle program aspects, while the one after that defines the
Thread View, the Server View, and typed time costs. After
that is a brief exposition of the CPPROFJ tool and its imple-
mentation, including how to collect data by stack sampling
and how to compute the profiles themselves. Final sections
summarize case studies, related work, and limitations.

2. Call Paths and Refinements

CPPROFJ captures the notion of optimization context
through the concept of a call path. The atoms making up
call paths are simply the methods of the Java program. (In
other languages these are known as procedures, functions,
or subroutines.) A call specification (or call spec) repre-
sents the set of times during program execution when the
call stack of the executing system contains a call from its
caller method to its callee method. A call spec may be ei-
ther immediate or extended. An immediate call spec from
A to B corresponds to an actual call directly from method
A to method B on the runtime stack. An extended call spec
from A to B represents all time spent when method A has
called zero or more intervening methods, the final of which
has called B (which may have called further submethods).

A call path represents the set of times during program
execution when the call stack of the system satisfies an or-
dered sequence of call specs. Intuitively, this represents the
time spent when a particular nested sequence of calls is ex-
ecuting. For example, (A B C ..D E) denotes a call path
having (in order down the call stack) a direct call from A to
B, a direct call from B to C, an extended call from C to D,
and a direct call from D to E. When all the calls of call path
P are present on the run time stack of a program at time t
in order, we say the execution satisfies P at t. Define the
cost of call path P during an execution of the program to
be simply the fraction of the total run time of the execution
during which the execution stack satisfied P .

Recursion complicates our understanding a bit, because
it introduces a potential ambiguity. For example, does the
following stack trace satisfy call path (A B C)?

A B D E B C

By the above definition, it does (because each sequential
call is present on the stack), but the question is whether this
interpretation is more useful than the more strict interpreta-
tion which would require that the callee of the (A B) call

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

be identical to (i.e. the same stack frame as) the caller of
the (B C) call. Call paths do (and should) have the broader
meaning, because our goal is to report the costs of optimiza-
tion opportunities. If we optimize by altering the version of
C called from B within calls from A, then it will affect all
such calls, even those having intervening callers between
the call from A to B and that from B to C. Thus, the costs
we report will better reflect potential cost savings due to the
optimization opportunity. This difference of interpretation
is an important advantage of a call path profiler over stack
tree profilers[12] (see Section 7).

A refinement profile of a call path P is a (typically, or-
dered) list of call paths and their costs, where all the call
paths are related to P in a particular manner. The most fa-
miliar type is the immediate downward refinement, which
consists of all call paths (having nonzero costs) of the form
Px, all immediate callees of the call path P . For exam-
ple, let P be the call path (A B ..C D); then the immedi-
ate downward refinement profile of P could be (for a given
program and execution)

0.23 (A B ..C D x)
0.04 (A B ..C D y)
0.02 (A B ..C D z)

where the cost of each is reported on the left. This type of
refinement gives the user information as to how a call path
breaks up its time among its immediate subtasks.

An extended downward refinement of P consists of all
call paths (again, with nonzero costs) of the form P::x. The
extended downward refinement of (A B ..C D) could be

0.23 (A B ..C D ..x)
0.21 (A B ..C D ..f)
0.04 (A B ..C D ..y)
0.02 (A B ..C D ..z)
0.01 (A B ..C D ..g)

where f and g are indirect callees of P . This type of refine-
ment gives the user information as to which utility routines
and other many-use resources are used the most by aggre-
gating their times over the many uses.

While the downward refinements give information about
subtasks, the dual operation is also useful, that of asking
which of a call path’s callers (within a defined context) are
causing it to cost signficantly. For this, CPPROFJ defines the
upward split refinement profile. Given a call path profile P
of the formP1::P2, the upward split refinement of P at P2 is
the collection of all call paths having the form P1::xP2 and
their (nonzero) costs. As a concrete example, the upward
split refinement of (A B ..C D) at (C D) could be

0.15 (A B ..x C D)
0.10 (A B ..y C D)
0.04 (A B ..z C D)

This enables a bottom-up approach to resource usage; for
example, one can find which contexts are spending the most
time in database operations, i/o, or other resource usage.
This generalizes the upward refinement profiles of [5], in
that the immediate upward refinement is equivalent to an
upward split refinement with empty upper call path (P1).

To illustrate the power of context and upward split refine-
ments, consider this excerpt from a Server View (Section 4)
profile of the Email system case study (Section 6):

1.000 *
0.281 ..sun.io.CharToByteConverter
...

(Note that the * aspect, see Section 3, simply denotes time
spent in any thread, i.e. all the cpu time of the execu-
tion.) This shows that, annoyingly, 28.1% of the cpu time
of the server is spent converting Java’s unicode characters
into ASCII bytes (for subsequent writing to files or to the
network). There are valid reasons for doing this in some
circumstances, for example when writing a database file,
whose contents are created via String manipulations, to
disk. But there may be less valid reasons.

By repeatedly applying upward split refinements to this
call path, we reach the profile shown in Figure 1. (Note:
throughout I will use the abbreviation “j” in place of
“java” in profiles. Also, due to the length of Java method
names, I will represent call paths using tree structured in-
dentation as is commonly seen in file system browsers in
MacOS and Windows. The cost on a line is for the call path
whose last method is on that line.) Figure 1 shows that char-
acter conversion costs most (13.5%) when writing message
body files. This may represent an optimization opportunity:
message bodies start out as bytes, so don’t convert them to
characters unless necessary. On the other hand, the 10.8%
potential savings within the database property list save rou-
tine is less likely to be avoidable, since the database con-
tents are produced through heavy use of string manipula-
tions. The conversion done when writing out header files is
insignificant, so there is no point in bothering with it.

3. Aspects

Aspect oriented programming is a way of conceptualiz-
ing the design of a program so that individual cross-cutting
concerns, such as database access, abstract data type im-
plementations, or input/output operations, are made explicit
and implemented in a localized, declarative way. The in-
tuition is that we wish to capture design decisions govern-
ing potentially widely scattered code fragments in a central
declaration so that they can be more easily maintained and
evolved. Of course, a prime motivation for doing this is that
when we later learn the decision was made suboptimally,

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

1.000 *
0.212 ..tools.dbplist.save
0.116 j.io.PrintWriter.close
0.108 j.io.BufferedWriter.close
0.108 j.io.BufferedWriter.flush
0.108 j.io.OutputStreamWriter.write
0.108 sun.io.CharToByteConverter
0.173 ..tools.msg.write_bfile
0.135 j.io.PrintWriter.close
0.135 j.io.BufferedWriter.close
0.135 j.io.BufferedWriter.flush
0.135 j.io.OutputStreamWriter.write
0.135 sun.io.CharToByteConverter
0.038 ..tools.msg.write_hfile
0.008 j.io.PrintWriter.close
0.008 j.io.BufferedWriter.close
0.008 j.io.BufferedWriter.flush
0.008 j.io.OutputStreamWriter.write
0.008 sun.io.CharToByteConverter

Figure 1. A Server View profile after repeated
upward splitting starting from the char-to-
byte conversion routine.

we can change it. When the suboptimality is due to ineffi-
ciency, we obviously need a way to measure the costs and
discover these optimization opportunities.

We can incorporate aspects into call path profiling by
defining pseudo-methods, which represent a logical disjunc-
tion of some set of methods in the program. Examples
from the aspect-oriented literature include C.* where C is
a class, and *.debug*, representing all methods on all
classes for printing debugging information. We say that a
true (non-pseudo-) method belongs to a pseudo-method A
if it matches A’s defining disjunction (pattern). We extend
the definition of call path to include pseudo-methods by al-
lowing them to appear in call path notations and augment-
ing our definition of call path costs. We first augment our
definition of call specification to include calls to and from
pseudo-methods, and then augment what it means for a call
stack to satisfy a call specification as follows. (Here, A and
B represent pseudo-methods.)

� A stack trace satisfies a call spec of form (x A), where
x is a true method, if and only if it has an immediate
call from x to a true method t which belongs to A.

� A stack trace satisfies a call spec of form (x ::A),
where x is a true method, if and only if it has an ex-
tended call from x to true method t belonging to A.

� A stack trace satisfies a call spec of form (A x) if
and only if x is a true method that belongs to A and it
contains a call to x.

� A stack trace satisfies a call spec of form (A ::x),
where x is a true method, if and only if it contains an
extended call to x from true method t belonging to A.

� A stack trace satisfies a call spec of form (A ::B)
if and only if it contains an extended call from some
true method tA belonging to A to a true method tB
belonging to B.

This augmented notion of call spec satisfaction extends
what it means for a stack trace to satisfy a call path contain-
ing pseudo-methods as well. Thus, the cost of a call path
containing pseudo-methods is then simply the fraction of
total time spent when the stack trace satisfies the call path,
as before. Note that we do not allow immediate calls from
one pseudo-method to another. This can lead to a useless
proliferation of profile entries.

The refinement profiles must be extended to incorpo-
rate pseudo-methods as well. Given the above definition of
meaning and costs of call paths having pseudo-methods as
entries, the definitions of the refinements remain the same,
except that none of the results will contain immediate calls
from one pseudo-method to another, since this case is disal-
lowed by the definition.

The primary usefulness of pseudo-methods in profiles is
that they aggregate (possibly overlapping) times spent in
different members of the aspect. As an example, in the
email system case study (see Section 6), I defined an aspect
corresponding to the ADT representing queues of email
messages: msg queue.*. This profile fragment:

1.000 SMTP_sender
0.051 ..msg_queue.*

showed that the msg queue.* aspect (ADT implementa-
tion) cost 5.1% of the run time of the SMTP sender threads.
This turns out to have been because of a quadratic imple-
mentation of the queue that was starting to become a prob-
lem due to testing under higher loads (hence longer queues).
An immediate downward refinement showed more detail:

1.000 SMTP_sender
0.051 ..msg_queue.*
0.034 msg_queue.add_msg
0.015 msg_queue.length
0.002 msg_queue.delete

I was able to replace the implementation so that adding mes-
sages and finding the length of the queue were constant time
operations. This savings is significant when even longer
queues occur under heavier loads. Note that the use of the
extended call spec involving the msg queue aspect allowed
aggregating the time in the various methods so that they ap-
pear as significant. Otherwise, their times would likely have
been much harder to spot. The addition of a bit of design
knowledge (the notion that msg queue is a single aspect)

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

helped find a relatively subtle performance problem during
performance testing, rather than having to find it when the
load became higher in production use.

4. Views and Typed Time

The complex multi-threaded applications of today may
be optimized with respect to many different performance
parameters. Two common ones are latency and throughput.
The former measures the average end-to-end time from start
to finish of a thread (transaction, query-response, etc). This
is typically very important to user acceptability, since users
are unhappy waiting long times for completion of a trans-
action. On the other hand, throughput, measured as thread
completions per unit time, is important to a service provider
who wants to handle many clients at once. If thread exe-
cutions require time spent in waiting for input/output, for
example, then one can have high throughput even with high
latency, since many clients can wait concurrently, with only
a few ready to use the CPU at any instant of time.

A performance understanding tool must take these dif-
fering needs into account. CPPROFJ does this by providing
two different types of views on performance. A Server View
type profile reports solely on CPU time spent in all threads.
This allows the user to see which call paths are account-
ing for significant CPU usage. This enables optimizing for
throughput, since by minimizing CPU usage we can handle
more thread instances per unit time.

A Thread View type profile, by contrast, accounts for all
time spent in instances of a single thread class and includes
time spent when the thread is not executing. For this, we
must define several types of time:

� :WAIT time is spent not executing, typically waiting
for input (but not for a monitor);

� :MONITOR time is spent waiting for an object monitor
to be released;

� :LOAD is time spent when the thread could run but is
not because a thread of the same priority is running;

� :PRIO is time spent when the thread could run but is
not because a higher priority thread is running;

� :RUN time is time spent when the thread is actually
executing (this is the only type of time reported in a
Server View profile).

The last three time types are the runnable types, while
the first two are the waiting types. Depending on limitations
of the particular Java Virtual Machine (JVM), it may not
be possible to get the necessary information to report all of
these types as distinct. This is a limitation of the Java JPDA
API used by CPPROFJ to get the information; one hopes

that in the future more JVMs will come to implement the
full JPDA capabilities, of course.

Note that it makes sense to (immediate downward) re-
fine some of the time types. Such a refinement of :PRIO
or :LOAD tells us the thread classes for which the current
thread is waiting. :MONITOR can be refined into the classes
of threads holding the monitor.

By way of illustration, the Email System case study (see
Section 6) shows the usefulness of the Thread View and
typed time. The client piece is a load tester for a novel email
system I developed independently. On first run, each client
(which generated and transmitted email messages as fast as
possible one after another) was much slower than expected,
due (it turns out) to high latency in the threads which ac-
tually sent the messages. Each client has a thread that cre-
ates and enqueues messages and another thread that actually
sends them to the server over the network. Using CPPROFJ
I looked at a Thread View profile for the SMTP sender

threads. It looked in part like this:

1.000 SMTP_sender.run
0.864 :PRIO
...

This immediately showed that the threads’ latency was due
in large part to the sender threads being preempted by
higher priority threads. An immediate downward refine-
ment shows more detail:

1.000 SMTP_sender.run
0.864 :PRIO
0.607 eventQueueServer
0.131 j.lang.ref.Reference$Handler
0.124 j.lang.ref.Finalizer$Thread

This shows that the eventQueueServer, which generates
the messages, and two garbage collection related threads
were getting priority. This points to the need to increase the
priority of the sender threads, since they do little computa-
tion anyway.

5. CPPROFJ and Its Implementation

The tool is built in two parts. The data collection part, the
SAMPLER, runs while the target program is running (typi-
cally on a separate machine on the network). It occasion-
ally interrupts the running program and records the runtime
stacks of all threads currently in the system, as well as mon-
itor information, if that is available, thread priorities, etc. It
writes this data to an intermediate file, the SampleData file;
it also writes a Strings file mapping strings (e.g. method
identifiers, object references) to integer codes used in the
SampleData file to represent them.

The second part, known as the Analyzer, is what the user
runs in order to view the profile data. The analyzer operates

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

on the SampleData and Strings files and presents the user
with an initial window giving summary information about
the thread classes that were observed. The user then has the
option of creating one or more Thread View windows (one
for each thread class) and a Server View window. Each pro-
file window starts by presenting a single top level node and
its cost, which is either 1.000 (for all Thread View windows,
since costs in Thread View represent fractions of the aver-
age thread lifetime and the top level node of this view must
be the entire lifetime), or else a number between 0.000 and
1.000 for the Server View. (A number less than 1.000 in the
server view indicates the target program was idle for some
of the time.) In each profile window, the user may click on
a profile entry to highlight it and then click on one of the
three profile types to compute and merge in the results of a
refinement profile of the highlighted entry.

Profile entries are presented in a hierarchical fashion,
with siblings sorted in decreasing order of cost. Thus, since
multiple levels of the hierarchy may be present in the same
profile, the overall ordering is not sorted by cost. (Due to
the verbosity of call paths, the tree representation was cho-
sen as by far the most compact display.) To help the user
quickly visually locate call paths having significant costs, I
have included a color icon with each line of the profile dis-
play, with the warmer colors indicating higher costs. The
user can limit the display to only entries having costs above
a threshold by adjusting a simple slider.

5.1. Data Collection by Stack Sampling

The key novelty in the present work with respect to
sampling-based profiling is the insight that it can now be
done in a portable way within Java itself, using the Java
Platform Debugger Architecture (JPDA) API. Previously,
sampling based profilers had to be implemented for each
combination of hardware architecture, operating system,
and language. JPDA, however, gives the Java programmer
the hooks necessary to get this information without requir-
ing special purpose code in the JVM.

The basic idea of sampling was originally proposed by
Knuth[10]: just randomly stop the running program, see
what it is doing, and then let it continue. Do this over and
over to build up a statistical picture of the program’s be-
havior over the course of the run. Specifically, CPPROFJ’s
Sampler uses JPDA to halt the target VM, asks it for a list of
the currently running threads, records the method running
in each stack frame for the runtime stack of each thread,
as well as other information when available, and then con-
tinues the VM. This can be done either strictly periodically
or at a randomly varied interval. The latter can be better
statistically (leads to more representative sampling).

Of course, completely halting a running VM is rather
drastic, so to keep overhead (the degree of disturbance to the

program’s behavior caused by the sampling process itself)
down, we sample at a very slow rate compared to program
execution speed. For the case studies I have used either once
every 10 seconds or once every 5 seconds. For long running
applications (such as servers), this is perfectly adequate to
get a good picture of program performance. Of course, one
must be a bit careful in interpreting profile results when they
represent very few sample hits. For example, call paths that
had 1 sample hit can have costs that vary quite a bit from the
reported cost, due to simple random chance. In a previous
paper[5], I prove that a reasonable heuristic (the “ten sam-
ples heuristic”) is to ignore costs (or at least be suspicious
of them) that represent 9 or fewer hits. By default, the slider
is set to the 10-hit level when the window first appears, but
the user may adjust it as desired.

5.2. Profile Computation

This paper lacks the space necessary to do an adequate
job of explaining all the algorithms necessary to computing
costs and refinement profiles. A forthcoming longer ver-
sion of this paper will describe them in detail. The previ-
ously published technique[5] must be extended to handle
multiple threads, aspects, multiple views, typed time, and
upward split refinements. In this subsection I will give a
brief sketch of the algorithm for computing the cost of a
call path. Refinement computation, which is based upon
the same concepts but made more complex by the need to
efficiently compute many costs in one pass through the data,
will be explained in detail in the long version of this paper.

Each time the Sampler stops the executing JVM, it col-
lects a sample. A sample consists of a stack trace for each
existing thread, plus ancillary information per thread, in-
cluding its run state, held and awaited monitors, and prior-
ity. The Analyzer reads the SampleData and Strings files
and builds a datastructure representing the sample infor-
mation. Since we only need to collect at most a thousand
samples (and typically more like a 100-200) to get an ade-
quate picture of program performance for practical use, this
datastructure easily fits into modern memory sizes, which
are roughly 32 times larger than when the original call path
profiler work was done.

A general utility operation in the implementation is
MAPCP(C; f). This method iterates over all thread in-
stances in all samples and calls the user-supplied function
parameter f on each thread instance that satisfies the call
path. MAPCP recognizes those thread instances by recog-
nizing each of the calls of C in sequence as it traverses the
stack trace. pseudo-methods in the call path are recognized
by matching its defining pattern to the true method names
in the stack trace.

To compute the cost of a call path, we call MAPCP,
giving it the call path as argument and a function which

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

Thread View:
t runnable t not runnable

M h > 0 h = 0 h > 0 h = 0

:RUN 0 1=e 0 0
:LOAD 0 (e� 1)=e 0 0
:PRIO 1 0 0 0

all other 1 1 1 1

Server View:
t runnable t not runnable

M h > 0 h = 0 h > 0 h = 0

:RUN 0 1=e 0 0
:LOAD 0 0 0 0
:PRIO 0 0 0 0

:MONITOR 0 0 0 0
:WAIT 0 0 0 0

all other 0 1=e 0 0

Table 1. Sample hits for thread instance t

simply counts the number of recognized thread instances.
Once MAPCP completes, we divide that number by the to-
tal number of samples. For Server View costs, we divide by
all samples taken during the Sampler run; for Thread View
costs for thread class T , we divide by the total number of
thread instances of class T in all samples.

The above is correct for call paths not ending in one
of the time type pseudo-methods: :RUN, :LOAD, :PRIO,
:MONITOR, :WAIT. For these, we must have special rules
for how many samples are counted at each thread instance.

In other words, let the call path whose cost we seek
(C) end in the method (or pseudo-method) M . Suppose
MAPCP has recognized the current thread instance t as sat-
isfying C. Let h denote the number of thread instances in
the current sample that are both in the runnable state and
also of higher priority than t. Let e denote the number of
runnable thread instances (including t) that are of equal pri-
ority with t. Then Table 1 shows the number of sample hits
to attribute to t under different conditions.

As shown, in Server View profiles, only runnable threads
are counted for call paths ending in the :RUN pseudo-
method. Moreover, since equal priority threads share the
processor equally (presumably), each such instance only
gets 1=e of a hit. The same is true for other (higher level)
call paths, since their runnability implies they are getting
1=e of the processor as well. All other Server View entries
are 0, reflecting various conditions when the thread instance
is not running or else the call path is denoting time spent
awaiting other threads.

For Thread View, since we are really measuring clock
time (not only CPU time), call paths representing wait time

get nonzero hit counts. :PRIO call paths get 1 hit only when
t is runnable but not running due to higher priority threads.
:LOAD call paths get (e�1)=e hits, because only 1=e of the
time in such situations will t actually be running.

The notion of attributing fractional sample hits to con-
current threads was used in the Quartz profiling system[1].
However, the integration of that approach here and exten-
sion to handle multiple time views and thread priorities is
new with this work. CPPROFJ uses an exact rational arith-
metic data type to record and combine fractional hits, so no
precision is lost in the summing.

6. Case Studies

This section describes three case studies of applying CP-
PROFJ to realistic Java applications. In each, I describe opti-
mization opportunities discoverd using CPPROFJ, as well as
measurements of overhead and performance improvements.

6.1. Email System Case Studies

The first two case studies are taken from a novel email
system. I profiled both a message generation client pro-
gram and the email server itself. The purpose of the client
program is to generate and send messages to the server and
retrieve them from it in order to supply a load test for the
server. The server is a more or less typical email server that
accepts messages from the Internet via the SMTP protocol
and serves them back to clients using an encrypted variant
of the POP3 protocol. The primary goal of the server is high
throughput, while the primary goal of the client is low la-
tency so that it can send and receive as many messages as
it can as quickly as possible. Both client and server were
written independently as part of another project and then I
examined them using CPPROFJ as part of this work, looking
for performance problems. The server and client together
are approximately 24000 lines of Java code.

The Client. I ran the system with one client feeding
one server in various conditions, as shown in Table 2. I
used CPPROFJ to find performance bugs and then optimized
the most signficant ones. These bugs were described in
previous sections of this paper, so I will not repeat them
here. As the table shows, however, the improvements were
significant when run on both JVMs. Throughput (mes-
sages/second) increased from 0.6 to 3.0 on the interpreted
(JPDA) JVM, and the same code increased from 10.4 to
12.5 when run in the Hotspot (JIT compiled) JVM. The im-
provement was not as dramatic in the production JVM, be-
cause (in part) the interpreted JVM was slow enough that
the jobs became compute bound. Thus, the performance
bugs affecting CPU usage were exacerbated in that JVM
and hence fixing them had a larger effect.

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

JVM mode original optimized
No JPDA 10.4 12.5
JPDA no sampling 0.5 3.1
JPDA 10sec sampling 0.6 3.0

Table 2. Email client case study throughputs

JVM mode original optimized
No JPDA 13.7 14.1
JPDA no sampling 12.8 13.7
JPDA 10sec sampling 12.6 12.8

Table 3. Email server case study throughputs

Note that the overhead due to sampling was small (�
3:3%) both for the original and the optimized code bases.
(I believe the “negative overhead” in the unoptimized case
was due to noise load on the client machine.)

The Server. For the server case study, I ran two faster
clients sending messages in order to more fully load the
server. I then collected a profile on it using 10 second
sampling. One optimization opportunity discovered sig-
nificantly contributed to thread latency: the SMTP service
threads were monitor-waiting when they had to add refer-
ence counts to messages (or subtract them from) the mes-
sage queue’s data structure. These operations were synchro-
nized, because the message queues are shared among many
threads. However, looking at the code, too much work is
done within the critical section; the record could be located
first, prior to acquiring the monitor, and only the increment
or decrement operation could be within the critical section.
This problem was found from the following Thread View
profile (fragment) for the SMTPServiceThread class.

1.00 SMTPServiceThread
0.52 SMTPServiceThread.finalizeMsg
0.21 :MONITOR
0.19 SMTPServiceThread
0.14 SMTPServiceThread.finalizeMsg

As shown in Table 3, overhead due to sampling was from
2 to 9 %. The optimizations found resulted in (modest)
speedup both in the JPDA-mode and production JVMs.

6.2. BOB Case Study

BOB (Business Object Benchmark) is a Java bench-
mark based upon the Transaction Processing Performance
Council’s[14] TPC Benchmark C (TPC-C). It is described
in a book on enterprise Java performance[7] and the code
is provided on an associated web site. It is designed to

JVM mode ramp-up (m) test (m) score (tps)
No JPDA 26.5 20.5 216
JPDA no sampling 21.9 20.0 102
JPDA 5sec sampling 21.6 21.0 100

Table 4. BOB case study measurements

be an object oriented version of TPC-C for measuring Java
systems. As a profiler test, I ran it in a lower scale mode
(full test, 10 warehouses, 10 terminals per warehouse, 100
threads, 1% population level). It models order fulfillment
and payment for goods moving through warehouses.

When run, the benchmark first enters a (roughly) 20
minute “ramp-up” phase and then executes a 20 minute
“test” phase; it then produces a score representing trans-
action throughput. As in the email studies, I ran it in three
different conditions. Table 4 shows the results, for over-
head comparison purposes. As we can see, sampling only
reduced throughput by 2% compared to the same JVM with-
out sampling. Apparently, JPDA mode slows ramp-up time
by about 7 or 8 %. The test phase was slowed by sampling
about 5% as well, even though the throughput was not re-
duced by that much. (The mysterious increase in ramp-up
time for the production JVM may be worth investigating.)

I then examined the profile collected using Analyzer to
search for performance bottlenecks in the BOB code. The
Server View shows an interesting fact:

0.418 *
0.248 ..j.util.Date.getField

which shows that over half of the CPU time actually used is
spent getting various parts of the current date and time. Ex-
amining a Thread View profile of the CompanyRunnable

thread class (the only one of interest), we see that the av-
erage thread spends 83.9% of its latency time waiting for
some other CompanyRunnable thread to get Date fields.
Note the interleaved use of immediate and extended refine-
ments to get to this information via five mouse clicks.

1.000 CompanyRunnable
1.000 CompanyRunnable.run
0.911 TransactionManager.go
0.895 ..:MONITOR
0.894 CompanyRunnable
0.839 ..j.util.Date.getField

If this were a real application and we were concerned about
thread latency, then we could likely reduce the work done
in constantly getting the date fields and certainly get rid of
monitor waiting for this operation.

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

7. Discussion

Related Work. Profiling is, of course, an old idea,
and there are many flavors of profiler. Body profilers such
as Unix’s prof profiler, report costs incurred executing in
the body of each computation unit only. Time in call de-
scendants is not included. This measurement is obtain-
able in CPPROFJ as an upward split refinement of the call
path (* ..:RUN). In fact, CPPROFJ allows related profiles
such as upward splits of (* ..:PRIO) and (* ..:MON-

ITOR). Method (function) profilers also report time spent
in each computation unit, but include time in all call de-
scendants. Many tools produce method profiles, including
Sitraka’s JProbe[13]. A method profile can be produced
easily in CPPROFJ as the extended downward refinement
of (*). This can be done in either type of view. Call graph
profilers[4, 13] report costs incurred in all 1-level call con-
texts; that is, they report costs for all length 2 call paths.
This information can be obtained from CPPROFJ, if desired,
but the more useful refinement-based approach in CPPROFJ
ignores the large majority of length 2 call paths (which
are insignificant anyway) and instead focuses on signficant
length 2 (and longer) call paths.

The common drawback of all these profilers is that while
providing copious low level information, they do not relate
costs to design decisions within arbitrary call context. As
the char-to-byte example in Section 2 showed, call contexts
as deep as six and more are common, particularly when
software is constructed in a layered, object-oriented fash-
ion where classes inherit behavior from reusable ancestor
classes. This difference between CPPROFJ and lower level
profilers is fundamental: one can easily show by (common)
example that the information in a call path profile cannot in
principle be inferred from the information presented even in
body, function, and call graph profiles together.

Stack tree profilers[12, 3, 11], on the other hand, do col-
lect and present information on arbitrarily deep call stacks.
However, they present this information as a single tree
rooted at the (conceptual) main routine. Thus, resource
usage that occurs in many widely-spaced calls distributed
over the execution (such as char-to-byte conversion rou-
tines, msg queue methods, and database functions, for ex-
ample) will have their costs obscured by the need to manu-
ally add up many small contributions. None will stick out
of the display. CPPROFJ, on the other hand, is designed to
focus attention by aggregating many aspects together, such
as typed time and aspect pseudo-methods. Another impor-
tant difference was alluded to in Section 2: because they do
not aggregate information on recursion as does a call path,
they do not correctly report on costs of calls from recursive
methods to other methods, when the goal is to gauge the
likely impact of optimizations. This is because the cost of A
B C will be reported separately from the cost of A B D E

B C, due to the tree structure of the display.

The present work is based upon previous work on call
path profiling[5, 6], but there are some notable differences.
Previous work explored profiling arbitrary monotonic re-
sources, of which time is only one example. Others include
space usage, cache misses, page faults, and system calls.
Any strictly increasing quantity could be used. The present
work only works for the typed time described above, be-
cause that is all I know how to obtain data for in a portable
way. It is always possible to implement specialized data
measurement infrastructure if one controls the JVM to be
used, which is the approach in many tools. The Analyzer
piece of CPPROFJ can be easily adapted to any such re-
source for which the SampleData and Strings files can be
obtained, as long as those input files do something reason-
able in associating resource consumption with the typed
time pseudo-methods. As stated earlier, the upward split
refinement profile is new in this work, as are the distinction
between Server and Thread Views, and support for typed
time within Thread View. Previous work had a notion of
“grouping,” which was a less expressive precursor to the
present notion of aspect. The useful capability of pruning
arbitrary time from the profile (described by boolean ex-
pressions over call paths), which was present in the earlier
work, has yet to be reimplemented in CPPROFJ.

Aspect oriented programming[2] is the study of how to
conceptualize and implement software in a way that sep-
arates concerns as much as possible (for ease of compre-
hension, maintenance, and reuse), without, hopefully, sac-
rificing too much in performance. There are a number of
language extensions that allow explicit aspect-oriented pro-
gramming in Java. One of the better known is AspectJ[9].
It provides language constructs for defining cross-cutting
aspects of the code; when control flow reaches an aspect
boundary (such as a call to a method belonging to an aspect
definition), user-specified code can be called. Typical uses
for “development” aspects (those used during code develop-
ment) might be to implement tracing, debugging, testing, or
instrumentation-based profiling tools. “Production” aspects
(those used in deployed code) can do things like implement
a display tracking changes in a model, such as updating the
graphical display when a point moves in a 3-D model. As-
pectJ allows defining aspects by name (i.e. patterns match-
ing against method names) and property-based, where the
pattern can match against signature elements or can refer to
properties of the control flow of the program.

CPPROFJ’s implementation of aspects is still in its ini-
tial stages. Currently, we only allow simple wildcarded
name-plus-argument-types specifications (e.g., no match-
ing on the return type). However, the AspectJ notion of
“controlflowbelow” as used in defining an aspect is cap-
tured naturally in call path profiles, since the costs reported
are always covering all time when control flow satisfies the

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

call path, including time in call descendants. As described
earlier, CPPROFJ can report costs incurred by cross-cutting
design decisions represented by aspects. If the code is im-
plemented in AspectJ (or some other aspect-oriented lan-
guage extension of Java), then it should be relatively easy
to change the design decision if an optimization is discov-
ered. If the code is not written in an aspect oriented way, a
CPPROFJ user can still define the aspects himself and locate
optimization opportunities using CPPROFJ. How easy it is
to actually carry out the optimizations so discovered is, of
course, dictated by the actual code structure.

Limitations and Future Work. Unfortunately, not all
modern JVMs work with the JPDA API equally well. Sun’s
Hotspot JVM, for example, must run in interpreted mode,
without the just-in-time (JIT) compiler. Thus, the applica-
tion may run much slower in this mode than it would in
production use. While this is clearly undesirable and can
obscure some performance issues, most performance bot-
tlenecks present in the code should manifest when run in
either JVM. Of course, it may be necessary to scale down
the test input in order to profile the system in a compara-
ble load regime. This has not been a difficulty in the case
studies. And, as they show, it is possible to find optimiza-
tion opportunities using CPPROFJ that result (once the code
is optimized) in performance improvements in the system
as run under the production JVM. I hope, as the use of
JPDA for sampling-based profiling becomes well known,
that JVM vendors will build in support for it into the pro-
duction/compiled modes of their JVMs. Perhaps even better
would be a special API to support Sampling based profiling,
which does not need the full capabilities of JPDA.

The sampling process itself introduces some overhead,
causing deviation from the program’s behavior by occasion-
ally halting the JVM. By reducing the (average) frequency
of Sampler, we can reduce this overhead to acceptable lev-
els. JPDA, being primarily a debugger interface, is not opti-
mal for sampling. Getting stack trace and other thread infor-
mation requires several individual remote procedure calls
across the network for each stack frame. This takes longer
than it would if the API had commands that could stream
this information in response to a single query. Hopefully,
this observation will inform future API designs.

As discussed above, previous call path profilers were ca-
pable of profiling other resources than time. Once there is
a portable way to do this in Java, or if someone designs a
special JVM to capture this information, CPPROFJ can be
easily adapted to handle it. See [6] for various techniques.

8. Conclusion

The enhanced approach to call path profiling in this pa-
per supports performance understanding of modern multi-
threaded client and server applications by enabling a user to

directly associate costs with optimizable design decisions.
Call context enabled specializations, cross-cutting aspect
implementations, and thread dependencies are three com-
mon categories of optimization opportunity to which costs
are directly associated by the techniques described here: the
various refinement profile types (including upward split re-
finements), two views of performance (Server and Thread),
typed time, and support for aspects. CPPROFJ is an all-Java
tool which exploits the recent development of the JPDA API
to achieve accurate and portable sampling-based profiling
for Java. However, the ideas are readily transferrable to
other languages and platforms; in fact, the Analyzer por-
tion of CPPROFJ can be used as is, assuming a Sampler can
be written for the other platform that produces SampleData
and Strings files in the defined format. The examples and
case studies in this paper provide support for the claim that
this approach is a useful next step toward high-level auto-
mated program performance understanding.

References

[1] T. Anderson and E. Lazowska. Quartz: a tool for tuning par-
allel program performance. In Proc. of ACM SIGMETRICS
1990 Conf. on Measurement and Modeling of Computer Sys-
tems, pages 115–125. ACM, 1990.

[2] Aspect-oriented software development (web site).
http://www.aosd.net.

[3] Franz Inc. Allegro COMPOSER User Guide, version 1.0,
1990.

[4] S. L. Graham, P. B. Kessler, and M. K. McKusick. Gprof:
a call graph execution profiler. ACM SIGPLAN Notices,
17(6):120–126, June 1982.

[5] R. J. Hall. Call path refinement profiles. IEEE Transactions
on Software Engineering, 21(6), June 1995.

[6] R. J. Hall and A. J. Goldberg. Call path profiling of mono-
tonic program resources in unix. In Proc. 1993 USENIX
Summer Technical Conf. USENIX Association, 1993.

[7] S. L. Halter and S. J. Munroe. Enterprise Java Performance.
Prentice Hall, 2001. Chapter 8.

[8] Java platform debugger architecture overview (web
page). http://java.sun.com/j2se/1.3/docs/
guide/jpda/jpda.html.

[9] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. Griswold. Getting started with aspectj. Comm. ACM,
44(10):59–65, October 2001.

[10] D. E. Knuth. An empirical study of FORTRAN programs.
Software–Practice and Experience, 1:105–133, 1971.

[11] J. Larus and T. Ball. Efficient path profiling. In Proc.
MICRO-29. IEEE, 1996.

[12] Pure Software Inc. Quantify User’s Guide, 1993.
[13] Sitraka jprobe (web page).

http://www.sitraka.com/software/jprobe/.
[14] Transaction processing performance council (web site).

http://www.tpc.org/.

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

