
Experience Report on Automated Procedure Construction for

Deductive Synthesis

Steve Roach

Department of Computer Science

Universit yof Texas at El Paso

El Paso, TX, 79968

sroach@cs.utep.edu

and

Je�rey Van Baalen

Department of Computer Science

Universit yof Wyoming

Laramie, WY 82071

jvb@uwyo.edu

Abstract

Deductive program synthesis systems based on auto-
mated theorem proving o�er the promise of \correct by
construction" software. However, the diÆculty encoun-
tered in constructing usable deductive synthesis systems
has pr evente d their widespread use. A mphion is a real-
world, domain-independent programsynthesis system.
It is specialized to speci�c applications through the cre-
ation of an operational domain theory and a specialize d
deductive engine. This pap erdescrib esan exp eriment
aimed at making the construction of usable A mphion
applic ations easier.

The software system Theory Operationalization for
Pr ogram Synthesis (TOPS) has a library of decision
procedur eswith a theory template for each procedur e.
TOPS identi�es axioms in the domain theory that are
an instance of a library of procedur eand uses partial
deduction to augment the procedur e with the capability
to construct ground terms for deductive synthesis. Syn-
thesized procedures are interfaced to a resolution theo-
rem prover. Axioms in the original domain theory that
are implied by the synthesized procedur es are removed.

During deductive synthesis, each procedure is in-
voke d to test conjunctions of literals in the language
of the theory of that procedur e. When possible, the
procedur egener atesground terms and binds them to
variables in a problem speci�c ation. These terms are
program fragments. Experiments show that the proce-
dur es synthesized by TOPS can r educe theorem proving

search at least as much as hand tuning of the deductive
synthesis system.

1 Introduction

Deductive program syn thesis technology has been
known since the late 1960's [3], [9]. How ev er, construc-
tion of usable deductive syn thesissystems is diÆcult.
In the past thirty years, a great deal of progress has
been made in the development of program syn thesis
systems based on theorem proving, transformations,
and logic programming [3], [12], [4]. How ever, in spite
of this progress, these techniques are not in the main-
stream of softw are development. This paper describes
the results of an experiment aimed at making the con-
struction of usable deductive syn thesis systems easier.

Amphion [7], [14] is a real-world, domain-
independent program synthesis system developed by
NASA. A user of an Amphion application interactively
creates a formal speci�cation for a program by declar-
ing the inputs, the outputs, and relationships betw een
them. Amphion applications take these t ypes of speci-
�cations and generate source-code-level computer pro-
grams consisting of calls to components of target sub-
routine libraries. Amphion applications have been used
to generate programs, primarily consisting of assign-
ments and procedure calls, containing hundreds of lines
of code.

The �rst step in creating an Amphion application

1

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

is to write a declarative domain theory consisting of
an abstract speci�cation language, a concrete output
language, and kno wledgerelating the two. A t this
point, one could, in principle, generate programs by
proving theorems. For instance, Amphion applica-
tions use SNARK [15], which is a refutation theorem
prover. How ev er, general-purpose theorem provers lik e
SNARK are subject to exponential gro wth in the search
space required to �nd a proof. To make an Amphion
application usable, the system must generally be modi-
�ed to reduce the search required for completing proofs,
a process often called op erationalization.

Operationalization is itself diÆcult, time consuming,
and requires expertise in program synthesis, familiarity
with the domain, and knowledge of the operational se-
mantics of SNARK. In the past, Amphion applications
ha ve been constructed by experts in deductive synthe-
sis and have required substantial operationalization for
each new domain. F urther, the addition or modi�-
cation of axioms frequently en tails re-operationalizing
the system. Axioms in a domain theory may be cou-
pled to other axioms in ways that are diÆcult to pre-
dict apriori. This has been the major impediment to
the construction and maintenance of Amphion appli-
cations.

This paper describes our experience with a proto-
type of a software tool, TOPS, Theory Operationaliza-
tion for Program Synthesis. TOPS takes a declarative
domain theory as input and automatically generates an
eÆcient, domain-speci�c synthesis system comparable
to a system that would be hand-tuned by an expert.

The usual methods of operationalization fall into
three categories: (1) providing general theorem prov-
ing strategies, tactics and heuristics; (2) reformulation
of axioms in the domain theory; and (3) incorporat-
ing new inference rules and special purpose reasoning
mechanisms.

While strategies and tactics are helpful, general
methods are inadequate for all but simple problems [8].
Heuristics are ad ho c rules for selecting axioms upon
which to act. Reformulation of axioms in the domain
theory to force thetheorem pro ver to apply inference
rules in a speci�c order or in a speci�c way changes a
simple declarative domain theory into one that depends
on the characteristics of the theorem prover being used.
The axioms become more diÆcult to verify and main-
tain, since they adopt a more operational than declar-
ative character. Hence, we would rather leave the do-
main theory declarative and operationalize it by some
automatic process.

TOPS employs a combination of methods 2 and 3 to
automatically operationalize a declarative domain the-
ory . It automatically incorporates special-purpose rea-

soning mechanisms into the general-purpose theorem
prover based on axioms it �nds in a domain theory and
reformulates the remaining domain theory . Suppose
the original domain theory is T and SNARK can, in
principle, perform proofs of the form T ` �, where � is
a formula of restricted form (to be de�ned later) in the
language of T . Then, TOPS designs a special-purpose
inference mechanism `T1 that can perform proofs of
the form reform(T � T1) `T1 reform(�), where reform
represents the reformulation process.

TOPS designs a special-purpose inference mecha-
nism from a library of parameterized, special-purpose
inference procedures. Each such procedure is anno-
tated with a parameterized theory. TOPS identi�es
subtheories in a domain theory that imply instances of
procedure theories. Each suc h subtheory is removed
from the domain theory and, in its place, an instance
of the identi�ed procedure is interfaced to the theorem
prover. Hence, `T1 is built by instantiating and com-
posing library procedures and in terfacing these with
SNARK.

Some previous e�orts at incorporating special pro-
cedures into automated theorem provers have resulted
in extremely complex procedures with a large amount
of communication required betw een the theorem prover
and the procedures [1]. The complexity of the interface
between the theorem prover and the procedures can
negate muc h of the performance gained by the proce-
dures. In contrast, TOPS' synthesized procedures limit
the interaction betw eenthe procedures and the theo-
rem prover b y separating the non-logical symbols of the
theories of the procedures. This is possible because the
procedures are �ne-grained: they decide relatively sim-
ple theories.

The next section describes DRAT, a technique for
designing procedures for ground satis�ability problems,
and then explains how TOPS extends DRAT to auto-
matically operationalize a domain theory for deduc-
tive synthesis. Section 3 provides some bac kground
on the NAIF domain for solving solarsystem geome-
try programs. Section 4 presents TOPS, and Section
5 presents experimental results of using TOPS on the
NAIF domain. Finally, Section 6 summarizes.

2 Interfacing Decision Procedures

2.1 DRAT

The technique described here was �rst introduced by
DRAT, Designing Representations for Analytical Tasks
[16], [17]. A problem posed to DRAT is a pair hT; F i,
where T is a sorted, �rst-order theory and F is a set
of queries. A possibility query asks whether T [f is

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

satis�able, where f 2 F is a ground formula. Ne cessity
queries ask whether T) f or, equivalen tly,whether
T [:f is unsatis�able.

Given a �rst-order speci�cation of a problem, DRAT
analyses the non-ground axioms in T and replaces as
many as possible with instances of decision procedures
for ground satis�ability. These procedures decide for
some theory whether or not a ground formula is sat-
is�able in that theory. DRAT has a library of param-
eterized decision procedures which it instantiates and
in terfaces to a general-purpose theorem-prover. Be-
cause many of the axioms of the original theory are
replaced by eÆcient and directed decision procedures,
problems are solved muc h more eÆciently by the the-
orem prover/decision procedure combination designed
by DRAT.

The parameters of DRAT's library procedures are
the nonlogical symbols of the procedure's theory. F or
example, one procedure decides the satis�ability of
ground formulas involvingan equivalence relation R.
Hence, the procedure would indicate that the conjunc-
tion R(a; b)^R(b; c)^:R(a; c) is unsatis�able. In this
case, R is this procedure's parameter and is instanti-
ated with a relation symbol from the domain theory
when DRAT interfaces the procedure to SNARK. The
procedures decide satis�ability very eÆciently by rep-
resen ting ground facts in a data structure that encodes
the relevant properties. F or example, the procedure
for R above represents ground fact involvingR in a di-
rected graph that encodes reexivity, symmetry, tran-
sitivity in its structure.

Di�erent strategies are employed to construct
graphs for di�erent type of formulas. For example,
when the formula is a conjunctionof literals, a graph
is constructed from the positive literals in the conjunc-
tion and then the formula is satis�able just in case the
graph does not contain a positive occurrence of one of
the negative literals in the conjunction.

Decision procedures are interfaced to SNARK
through separated inference rules which are based on
R Qresolution [2]. They w orkwith clauses that are
separated relative to a subtheory.

De�nition (Separated Clause) Let L be the lan-
guage of a theory T , a sorted �rst-order theory with
equality. We treat equality as a logical symbol, so
=62 L. Let L1 � L be the language of T1 � T . A
clause C with the follo wing properties is said to be
separated relative to T1:

1. C is arranged into C1 _C2, where both C1 and C2
are disjunctions of literals (i.e., clauses).

2. All the function and relation symbols in C1 come
from L1 and all the function and relation symbols

in C2 come from L� L1.

Notice that C1 _C2 can be written C1) C2, where
C1 is the negation of C1. Since C1 is a disjunction of
literals, C1 is a conjunction of literals. C1 is called the
ante cedent of the separated clause and C2 is called the
consequent.

DRAT designs a collection of decision procedures for
T1 a subset of a theory T, removes the axioms of T1,
and separates the remaining axioms relative to T1.

A separated refutation of a set of separated clauses T
is a sequence of separated clausesK where eachKi 2 K
is an element of T or is derived from one or more of
the previous Ki by separated resolution or separated
paramodulation. Separated resolution is an extension
of standard binary resolution. Two literals of oppo-
site polarit yin the consequents of separated clauses
are uni�ed. The uni�er is applied to the antecedents,
and the an tecedents are conjoined. If the antecedent
is satis�able, the consequent is formed in the standard
w ay.Separated paramodulation is a similar extension
to paramodulation.

A separated refutation is closed when a set of clauses
of the form fCi) 2; : : : ; Ci+m) 2g is derived such
that T1 j= 9(Ci _ � � � _ Ci+m), where 2 denotes the
empty clause and 9 denotes existential closure. In some
cases, the structure of the theory T1 and antecedents of
the separated clauses in T � T1 is suc h that, whenever
T is unsatis�able, a separated refutation can be found
that ends in a single clause. One such case is when
T1 is Horn and the an tecedents of all clauses con tain
only positive literals. In this case, we need only check
for a single clause whose antecedent (a conjunction of
literals) is a theorem of T1 and whose consequent is
the empty clause [2, p. 71]. The theories of DRAT's
library procedures are all Horn, and so we restrict our
considerations in this paper to this case.

The theorem prover with interfaced decision proce-
dures is used to solve a problem by attempting to �nd
a separated refutation. The procedures can decide the
satis�ability of ground antecedents. When a new sep-
arated clause is derived b y SNARK and its antecedent
is ground, the decision procedures are invoked to c heck
satis�ability. If the an tecedent is unsatis�able in T1,
the clause is discarded.

When SNARK derives a separated clause whose con-
sequent is empty and whose antecedent is ground, the
decision procedures are invoked to check that the an-
tecedent is a theorem of T1 by checking that its negated
an tecedent is unsatis�able in T1.

Note that since the queries given in a problem spec-
i�cation to DRAT are all ground and since SNARK
uses set-of-support strategy to deriv e clauses with
empty consequents, a clause with empty consequent

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

and ground antecedent will always be deriv edwhen
T [:f is unsatis�able. As explained in the next sec-
tion, this will not be the case when deductive synthesis
problems are considered.

2.2 Extending DRAT for Deductive Synthesis

TOPS extends DRAT to program synthesis. Lik e
DRAT, TOPS analyzes a domain theory to identify sets
of axioms that are instances of the theory of a library
procedure. These axioms are removed from the domain
theory ,and syn thesized procedures are in terfaced to
the theorem prover.

DRAT w as designedto produce ground satis�abil-
ity procedures. In contrast, TOPS is designed to pro-
duce procedures for deductive synthesis. In this case
instead of being ground, thean tecedents of separated
clauses can contain variables that must be \�lled in"
with ground terms. More precisely, when a separated
clause with empty consequent is deriv ed, the proce-
dures must prove that the existential closure of the an-
tecedent is a theorem of T1. It is also required that wit-
nesses be produced for the variables in the antecedent.

T o see why variables appear in antecedents when
proving theorems for deductive synthesis, note that in a
deductive synthesis problem, theorems are of the form
8�x9�y[P (�x; �y)], where �x and �y are vectors of variables
and P is a quanti�er-free formula. The variables in �x
represent the inputs to the program that is synthesized.
By the �rst-order rule of universal generalization, w e
can substitute freshly generated constant symbols �c for
the �x, obtaining 9�y[P (�c; �y)]. Hence, theorems of this
later form are what must be proved, and witnesses that
serv e as program fragments must be identi�ed for each
y 2 �y.

TOPS uses the same procedure library as DRAT.
How ever, during the procedure iden ti�cationand in-
stan tiation process, TOPS generates a wrapper around
the DRAT procedure so that it can answer two types of
queries. First, the extended procedure can determine
that the existential closure of a clause's antecedent (a
conjunction of literals) is unsatis�able in its theory.
Second, it can generate witnesses demonstrating that
suc h a closure is a theorem of its theory . In the later
case, the procedure is actually used to demonstrate the
unsatis�ability of the negation of the existential closure
of a conjunctionof literals. In this case, the problem
is to �nd witnesses for the variables that demonstrate
that a disjunction of literals is unsatis�able.

TOPS generates the extentions to �nd witnesses us-
ing a t ype of partial deduction explained in Section 4.
Before this is explained, some background on the NAIF
domain is helpful.

3 Amphion/NAIF

Amphion/NAIF is an Amphion application that
solv es problems in solar system geometry. It has been
used to generate programs that are in use by space sci-
en tists, including programs that perform geometry cal-
culations used to assist in planning for the Cassini mis-
sion to Saturn. This section describes Amphion/NAIF
and provides background for the description of TOPS.

Amphion syn thesizes programs from speci�cations
written in a domain-speci�c �rst-order language. As
mentioned before, the speci�cations ha ve the form
8�x9�y[P (�x; �y)], where �x and �y are vectors of variables
and P is a quanti�er-free formula.

The synthesized programs are composed of subrou-
tines from the NAIF SPICE[10] subroutine library .
The speci�cation language is designed for domain ex-
perts who may not be familiar with the SPICE library.
It has elements such as points, rays, planes, and celes-
tial bodies (e.g. Saturn). This language is referred to
as abstract and is independent of the program repre-
sen tation of these elements. During programsyn the-
sis, witnesses are constructed for the existential terms
in the speci�cation. These witnesses are restrictedto
terms that correspond to elements of the SPICE sub-
routine library. These terms are called concrete. The
only time a user is concerned about the concrete level is
when de�ning the program input and output. We refer
to the signature of the abstract and concrete language
of a domain theory as �AT and �CT respectively.

The domain theory also contains axioms that relate
abstract and concrete terms. Some of the functions in
the domain theory have concrete arguments, but have
abstract sorts. These functions are called abstr action
functions as they map concrete objects to abstract ob-
jects.

In the remainder of this section, we introduce a part
of the NAIF domain theory that will be used in ex-
amples in the following sections. Experience with the
NAIF application has rev ealed tw o types of axioms
that lead to combinatorial explosions in the theorem
prover's search space. These axioms are the represen-
tation conversions and abstract constraints that have
concrete functions associated with them.

A representation conversion is a function that
tak es a concrete representation and produces an
equivalen t concrete representation. For example,
SPICE supports a number of time formats such as
UTC-Calendar (a string of the form \YYYY MMM
DD HH:SS") and ephemeris time (a double preci-
sion oating point number). Certain SPICE rou-
tines require speci�c formats. SPICE pro vides rou-
tines for con verting between formats. The dia-

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

gram below describes one suc h common con version.

time

tc
11

tc
22

(UTC2Ephemeris _)

(absctt UTC _) (absctt Ephemeris _)

In this diagram, tc1 and tc2 are concrete time coordi-
nates. In a program, these might be variables holding
a representation of a point in time. 1 T ime is abstract.
It is free of representation details. In a speci�cation,
timemight be used to specify the time of an event such
as when an observation is made.

The function absctt is an abstraction function that
takes a time coordinate and a time system and re-
turns an abstract time. Thus (absctt UTC tc1) says
\tak etc1 and in terpret it as a time in UTC coordi-
nates." This diagram says the time obtained by inter-
preting tc1 as a time in UTC coordinates is the same
as the time obtained by in terpreting tc2 as a time in
Ephemeris coordinates. tc2 is equal to the evalua-
tion of (UTC2Ephemeris tc1). The follo wing axiom
expresses the same relation.

8tc(= (absctt UTC tc)
(absctt Ephemeris (UTC2Ephemeris tc)))

The following axiom expresses the inverse function.

8tc(= (absctt Ephemeris tc)
(absctt UTC (Ephemeris2UTC tc)))

The presence of representation conversion axioms in
a domain theory causes a combinatorial explosion in
theorem prover searc h because these axioms imply an
in�nite number of di�erent conversion sequences for
getting from one coordinate system to another. As a re-
sult, when the theorem prover must construct a witness
for an existen tiallyquanti�ed variable that involves
converting betw een coordinate systems, there are many
possible witnesses andno adequate w ay to prefer one
witness over another based on syntactic propertiesof
formulas.

The NAIF domain theory for light time corrections
provides an example. T o computethe angle at whic h

1In the NAIF domain, time is considered to be a total order.

That is, for any two times t1 and t2, either t1 = t2, t1 > t2, or

t1 < t2. Relativistic e�ects are ignored.

sunlight strikes the surface of Saturn at a given time t,
it is necessary to know the position of the Sun relative
to Saturn when the light at Saturn at time t left the
Sun. The program must �nd the location of Saturn at
time t and the location of the Sun at time t��t, where
�t is the time it takes light to travel from the Sun to
Saturn.

T o describe light-time corrections, the NAIF
speci�cation language uses an abstract event. An
ev en t is a location in space at a particular time,
for example the location of a spacecraft at the time
a photograph is tak en. The abstract relation for
describing the ligh t-time constraint is lightlike?.
Two ev en tsare lightlike? if a photon or ray of light
leaving the �rst event arriv es at the second ev en t.
A t the concrete level, there are tw o functions that
compute times based on the lightlike? constraint.
These are sent and recd. Given the location and time
of origin (event1) and a destination location, recd
computes the time at the destination (event2) so that
(lightlike? event1 event2). Given a location and a
time of a destination (event2) and the location or the
origin, sent computes the time at the origin (event1)
so that (lightlike? event1 event2). The following
diagram describes recd.

event
11

event
22

tc
11
, id

11
tc

22
, id

22

(recd id
11
 id

22
 tc

11
))

lightlike?

(object&time2event
 (absid _)
 (absctt Ephemeris _))

(object&time2event
 (absid _)
 (absctt Ephemeris _))

The relevant axioms in the NAIF domain theory are

8 onid dnid ets
(lightlike?
(obj&time2event

(absid onid) (absctt Ephemeris ets))
(obj&time2event

(absid dnid)
(absctt Ephemeris(recd onid dnid ets))))

8 onid dnid ets
(lightlike?
(obj&time2event

(absid onid)
(absctt Ephemeris (sent onid dnid ets)))

(obj&time2event
(absid dnid) (absctt Ephemeris ets)))

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

The presence of the lightlike? axioms in a domain
theory causes combinatorial explosion problems similar
to those causes by representation conversion axioms.

4 TOPS

TOPS takes a domain theory and a library of pro-
cedure templates as input. The output from TOPS is
a modi�ed domain theory and a set of procedure in-
stances. We refer to the execution of TOPS as theory
compilation, a process that is similar to partial deduc-
tion [6], [4], and knowledge compilation [5], [13]. Am-
phion uses the modi�ed theory and executes procedures
to syn thesize programs to solve problems in the NAIF
domain. We refer to this as program synthesis, to dif-
feren tiate the execution of TOPS from the execution
of TOPS-created procedures.

Axioms captured (implied) by the TOPS-created
procedures are removed from the domain theory. Re-
maining axioms that contain terms in the languages
of the theories of the procedures are separated. A t
program synthesis time, only the TOPS-created proce-
dures operate on these terms. The algorithm for cre-
ating these procedures is described here.

In the pseudo code below, Procedures is the set of
procedures created by TOPS. This algorithm attempts
to construct a procedure for each abstract relation sym-
bol in the domain theory. MakeProcedure generates a
procedure P. Capture&Separate removes axioms from
the domain theory T if they are implied by P and sep-
arates other axioms. Validate tests the procedure
to ensure it captures all necessary axioms. When a
procedure is syn thesized and validated, it is added to
Procedures. If any step fails, no procedure is added to
Procedures, and the domain theory is not modi�ed.

TOPS(Theory : T)
Procedures fg
For each R 2 �AT

P MakeProcedure(T;R)
T 0 Capture&Separate(T; P;R)
IF (V alidate(P))THEN

Procedures Procedures [P
T T 0

return(Procedures; T)

4.1 MakeProcedure Algorithm

MakeProcedure constructs a deductive synthesis
procedure P for a relation symbol R that operates on
a language L. Given a query formula, P must provide
a set of equalities betw een existential variables in the
query and ground terms in L suc h that the formula is

valid. This set of equalities is called an answer. A t pro-
gram synthesis time, P looks up previously computed
answers. A t theory compilation time,MakeProcedure
is responsible for creating the procedure P , compiling
the list of results that P will use at program synthesis
time, and ensuring that the results in the list are ade-
quate to produce answers for any query. The algorithm
is given here.

MakeProcedure(Theory : T;Relsym : R)
Index Classify(T;R)
AbsFns ExtractAbsFns(T; Index;R)
Slots InputOutput(AbsFns; T;R)
termlist UnitAnswers(AbsFns; Slots; T;R)
return(CreateProcedureInstance(Index; termlist))

Procedure creation begins with the classi�cation of
R, which is completed by function Classify. This al-
gorithm selects a template for a procedure that decides
the satis�ability of conjunctions of abstract literals in
L. The Classify function is described in detail in
[16]. As with DRAT, the library of procedures is or-
ganized in a hierarchy. TOPS classi�es each abstract
relation symbol in this hierarcy. The root nodes of
the hierarchy are de�ned syntactically (e.g., unary re-
lation, binary relation); nodes low er down are seman-
tically specialized (e.g., symmetric relation, partial or-
der). The theory of a procedure at a node is the union
of the axioms labeling the edges on paths from the root
to the node. The index returned iden ti�esthe deep-
est node reached in classi�cation. F or example, when
MakeProcedure is called for the abstract sort T ime,
only one relation symbol, namely equality, is found.
This is classi�ed as transitive, reexive, and symmet-
ric. When MakeProcedure is called for the abstract
sort Event, lightlike? is identi�ed as a relation symbol
and is classi�ed as reexive and antisymmetric but not
transitive.

The procedure template identi�ed by Classify con-
tains code for determining satis�ability. The remain-
ing e�ort in creating the procedure is to build the list
of answers so that the procedure can be used to con-
struct terms demonstrating validit y.Ultimately, P , at
program synthesis time, will need to complete liter-
als of the form (R (fabsfn1 t1:::tn)(fabsfn2 tn+1:::tm))
whereR is the abstract relation, fabsfn1 and fabsfn2 are
abstraction functions, and t1:::tm are concrete terms.
Some of the tis may correspond to existential variables
in the original query. T o complete a literal of this
form, P must generate bindings for these existential
variables. The theory compilation process proceeds in
three phases. First, all possible abstraction functions
are identi�ed. Second, the terms ti which may con-

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

tain existen tialvariables are iden ti�ed. Third, a set
of queries is generated, and proofs are constructed for
each query. The answer terms from these proofs are
collected and organized in the answer list. These steps
are detailed below.

Abstraction functions are identi�ed by the function
ExtractAbsFns. This algorithm returns a set of ab-
straction functions, all of which have the same abstract
range sort. It accomplishes this by using SNARK to
generate answers to queries of the form
9(x1; x2)R(x1; x2) or
9(x1; x2)(sort(x1) ^ sort(x2) ^ (x1 = x2)).
The result of these queries is a set of terms of the given
sort related by R. If any of these terms contain con-
crete arguments, the term represents an abstraction
function. ExtractAbsFns collects all of the answers
generated during a bounded searc h. If the list of an-
sw ersis exhaustive, then the algorithm �nds all pos-
sible abstraction functions. If searc h is cut o�, some
abstraction functions may be missed. If P does not
capture all of the necessary axioms, the Validate pro-
cess will fail.

Once a set of answers has been acquired,
ExtractAbsFns partitions the set into subsets of terms
that each have the same head symbol. The most spe-
ci�c generalization (MSG) is computed for each subset
[11]. The resulting set of MSGs is returned as the set
of abstraction functions. In the lightlike? example,
SNARK is given the query 9(x1x2)(lightlike? x1 x2).
One result of this query is the pair of bindings
x1 = (obj&time2event o1 t),
x2 = (obj&time2event o2 (recd o1 o2 t)).
The variables o1, o2, and t represent concrete sorts,
so ExtractAbsFns iden ti�esobj&time2event as an ab-
straction function.

InputOutput attempts to iden tifycombinations of
parameters to the abstraction functions that, when
ground, allow the construction of ground terms for the
remaining parameters. The parameters in this combi-
nation are labeled input, and the parameters for which
terms are constructed are labelled output.

T o partition the parameters of the abstraction func-
tions, SNARK is called with a query of the form
9(ŷ1; ŷ2)(R (absfn1 ŷ1)(absfn2 ŷ2)), where ŷ1 and ŷ2
are v ectors of variables, one variable for each parameter
of the abstraction functions absfni. The parameters
are labeled as input or output based on analysis of the
results. F or the NAIF domain, it is only necessary for
a parameter to be labeled as either input or output. If
suc h a partition is not possible, no procedure is created
for R.

For lightlike? the query is

9(y1 y2 y3 y4)
(lightlike? (obj&time2event y1 y2)

(obj&time2event y3 y4)).

An answer to this query is a binding pair. When the
query is applied to the NAIF domain theory, the �rst
parameter slot always contains constants. The second
slot contains v ariables and the concrete functionssent
and recd. F rom this, it is determined that the �rst
slot is input and the second slot is output. For time
conversions the query is
9(y1 y2 y3 y4)(= (absctt y1 y2) (absctt y3 y4)).
Again, the bindings for y1 and y3 are constants (suc h
as Ephemeris or UTC), and y2 and y4 are bound to
either v ariables or concrete functions.F rom this, it is
determined that the �rst slot is input and the second
slot is output.

Compilation of solutions to synthesis queries is com-
pleted by function UnitAnswers, which attempts to
assure coverage of the entire input parameter space
by examining the answer sets obtained during the in-
put/output analysis. The coverage considers univer-
sally quanti�ed variables in the answer set as well as
constants and functions. The queries for this step are
similar to the queries for InputOutput except that the
existential variables for input slots are replaced with
constants or universally quanti�ed variables.

Given the set of abstraction functions, the input and
output labeling for these functions, and the properties
of the relation, UnitAnswers constructs a query for
each pair of abstraction functions and each set of slot
instances. These queries are submitted to SNARK, and
the parameter sets and returned bindings are retained.
SNARK is restricted to return terms in the concrete
language. A list, termlist, of these answers is ordered
so that the most speci�c solutions appear �rst, and
more general solutions appear later. During program
synthesis, termlist is searched sequentially .

When the partitioning of the parameters for
lightlike? is complete, UnitAnswers evaluates the sort
of the �rst parameter slot. Since there are many con-
stants in this slot (i.e., names for the di�erent coor-
dinate systems), UnitAnswers attempts to generalize
by replacing concrete constants with universally quan-
ti�ed variables. The following queries are given to
SNARK as a result of the analysis of lightlike?:

8(n1 n2 t1)9(t2) (lightlike?
(obj&time2event (absid n1) (absctt Ephemeris t1))
(obj&time2event (absid n2) (absctt Ephemeris t2)),

and

8(n1 n2 t2)9(t1) (lightlike?
(obj&time2event (absid n1) (absctt Ephemeris t1))
(obj&time2event (absid n2) (absctt Ephemeris t2)).

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

The results from these queries are the pairs t2 =
recd(n1 n2 t1) and t1 = sent(n1 n2 t2). These re-
sults are written into the term list for the generated
procedure. This completes the creation of the proce-
dure. The remaining steps validate the procedure and
modify the domain theory.

A t program synthesis time, a procedure must eval-
uate the satis�ability of a conjunction of literals and
generate bindings for variables. Suppose that the sep-
arated clause

(lightlike?
(obj&time2event (absid Sun) (absctt Ephemeris t1))
(obj&time2event (absid Mars) (absctt Ephemeris t2))
! �

(where t1 and t2 are v ariables andSun and Mars are
constants) is resolv edagainst a second clause of the
form 2 ! with the uni�er t2=c where c is a ground
term. First, the procedure determines that the an-
tecedents are satis�able. Then, since c is ground, it
is possible to generate a ground binding for t1. The
literal matches the second entry in the procedure's an-
swer list:

(lightlike?
(obj&time2event (absid n1) (absctt Ephemeris

(sent n1 n2 t1)))
(obj&time2event (absid n2) (absctt Ephemeris t2))

Thus the binding t1=(sent Sun Mars c) is applied
to the consequent. Note that had the procedure
been given a pair of literals in the antecedent such as
(lightlike? E1 E2) and (lightlike? E2 E1), the pro-
cedure would have detected unsatis�ability in the con-
junction of the antecedents, since lightlike? is antisym-
metric. In this case, the resolvan t is discarded.

4.2 Capture&Separate

Once a procedure has been created, TOPS modi�es
the domain theory by �rst removing all captured ax-
ioms, then separating an y remaining axiom that has
terms or literals in the language of the theory of the
procedure. When this process is complete, there should
be no axioms remaining in the domain theory that con-
tain concrete terms in the language of the procedure.
If any such axioms are present, the synthesized proce-
dure has failed to capture them, and TOPS does not
continue procedure generation.

Next, each axiom in the domain theory that con-
tains the abstract relation symbol R is temporarily re-
moved from the domain theory. Then the axiom (with

fresh constants substituted for universally quanti�ed
variables) is given as a query to the theorem pro ver
augmented with the created procedure. If the theorem
prover is able to prove the query, the axiom is removed
from the domain theory.

If the axiom cannot be proved, then the procedure
does not capture it, and procedure construction fails.
This happens when the theory of the procedure is a
subtheory of the theory of the language L, i.e., the
classi�cation does not push deeply enough into the hi-
erarc hyor no procedure template exists to coverthe
theory. Axiom testing continues until either all ax-
ioms containing R ha vebeen removed or procedure
construction fails. Validate searc hes the domain the-
ory for axioms whose consequent con tains subterms in
the concrete language of the procedure. If an y suc h
axiom is found, it was not captured by the procedure,
and Validate fails.

Note that the theory of the specialized proce-
dure and the theory of the axioms removed from
the domain theory do not need to be logically
equivalen t. The procedures created by TOPS
cannot produce every concrete answer that can
be produced without the procedures. F or example,
it is possible for SNARK to produce a term of the form
(absctt UTC (Ephemeris2UTC (UTC2Ephemeris tc))).
The TOPS-created procedure will only produce the
equivalent term (absctt UTC tc). Any term produced
by a TOPS-created procedure can be produced by
SNARK using the original domain theory.

5 Experimental Results

The TOPS compilation algorithm is highly e�ective.
This section describes experimental results from apply-
ing TOPS to one release of the NAIF domain theory.
This domain theory consists of 330 �rst-order axioms
that de�ne the abstract speci�cation language, the pre-
and post-conditions for a set of FORTRAN routines
in the NAIF tool kit, and the abstraction mappings
between the concrete and abstract sorts. The TOPS
procedure library contained two entries needed for the
NAIF domain: one for representation conversions and
one for acyclic, reexive relations.

T o test TOPS, w e compared the performance of
three deductive syn thesis systems: a TOPS-created
system, an un tuned system, and a system manually
tuned to the NAIF domain by program synthesis ex-
perts. The benchmarks against which these compar-
isons were made were the accuracy of the generated
programs, the number of deduction steps in a proof,
the number of deduction steps in the search to derive
each proof, and the time required for eac h system to

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25 30
Number of Literals in Specification

Inference
Steps

Hand Tuned

Tops

No Tune

Figure 1. Search Tree Nodes

derive an answer.
A series of 27 speci�cations w ereused to test the

con�gurations described above. These speci�cations
ranged from trivial with only a few literals to fairly
complex withdozens of literals. Half of thespeci�ca-
tions were obtained as solutions to problem speci�ca-
tions giv enby domain experts, thus this set con tains
representativ e problems encountered during real world
use. For each speci�cation, the size of the speci�cation
(number of literals), the number of inference steps re-
quired to prove the speci�cation, and the number of
steps required to searc h for the proof w ere recorded
for the un-tuned domain theory ,the hand-tuned do-
main theory, and the TOPS-tuned domain theory. The
NAIF domain theory consisted of 330 �rst-order ax-
ioms. The TOPS library contained two entries, one for
representation conversions and one for acyclic, reexive
relations. Five procedures were syn thesizedand used
to prove each of the speci�cations.

Figure 1 compares the number of inference steps
that each con�guration required to �nd a proof of spec-
i�cations (the y axis) with varying numbers of liter-
als (the x axis). This graph clearly shows the expo-
nen tial nature of deductive syn thesis when using only
universal tactics. Compared to this, the manually-
tuned and TOPS-created con�gurations scale relatively
w ell. A closer comparison of the search space for the
hand-tuned and TOPS-created systems reveals that
the TOPS system outperformedev en the hand tuned
system, and that the number of steps that the TOPS
system required to �nd a proof grew at about one third
the rate of the hand tuned system.

T o understand why TOPS does better than the hu-
man experts, recall that there are three approaches to
tuning a deductive synthesis system: (1) adding heuris-
tics to guide search; (2) reformulating the domain the-
ory to guide the theorem prover; and (3) adding spe-

cialized inference procedures to the theorem pro ver.
The human experts who have tuned Amphion domain
theories utilized the �rst tw omethods. Instructions
w ere written to order the set of formulas that the the-
orem prover generates in searching for a proof so that
those formulas most likely to lead to a proof are se-
lected for further processing �rst. These instructions
are based on heuristics discovered by theorem proving
experts. The human experts also considered the behav-
ior of the theorem prover, then reformulated axioms in
the domain theory to force the theorem prover to apply
particular inference rules.

In contrast to the human e�orts, TOPS creates and
in tegrates specialized inference procedures. This ap-
proach removes some axioms from the domain theory
and separates others, resulting in a smaller search space
for the theorem pro ver. TOPS is able to do this be-
cause of the uniform in terface provided by separated
inference rules. As a domain theory is modi�ed, TOPS
recompiles (from scratch) the theory ,simplifying the
tuning of the system.

So, in e�ect, our experimental results compare op-
erationalizing by designing specialized inference pro-
cedures to doing so by methods (1) and (2). These
results provide evidence that operationalizing by de-
signing procedures is more e�ective. An important ad-
ditional bene�t of our technique is that we have sho wn
that it can be automated. Experience with maintaining
the Amphion NAIF domain theory shows that opera-
tionalization is brittle: each time the domain theory
is modi�ed, the system must be re-tuned. Hence, an
automatic process is preferable.

6 Summary

This paper describes TOPS, an automated tech-
nique for operationalizing a domain theory to do deduc-
tive synthesis. Given a domain theory, TOPS identi�es
decision procedure templates from a library that can
be used for subsets of the theory. It instantiates these
templates generating procedures that �nd witnesses for
variables in deductive synthesis queries. These wit-
nesses represent code fragments.

The resulting procedures are in terfaced to a reso-
lution theorem prover that uses separated inference
rules. These rules operate on separated clauses of the
form C1) C2, where C1 is a conjunction of literals in
L1 � L, where L is the language of the domain theory,
and C2 is a disjunction of literals in L � L1. Sepa-
rated inference rules employ standard theorem proving
techniques to manipulate the consequents of separated
clauses but use the decision procedures to decide sat-
is�ability and validity of the antecedents.

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

The contribution of TOPS is to extend the DRAT
technique by using partial deduction to instantiate de-
cision procedure templates. The result of the partial
deduction is to compile tables that are used by the de-
cision procedures at program synthesis time. The pro-
cedures use the tables to lookup witnesses for variables
in a deductive synthesis query.

A domain theory operationalized by TOPS has ax-
ioms that cause combinatory explosion removed and in
their place decision procedures are interfaced to create
a theorem prover specialized to a particular domain.
Experimental results sho wthat a deductive synthesis
system specialized by TOPS can be dramatically more
eÆcient than a declarative domain theory and can be
at least as eÆcient as a theory operationalized by man-
ually reformulating axioms and adding heuristics to
guide search.

Of course, while TOPS works well for the NAIF do-
main, its ability to achiev e dramatic speedups is limited
to domain theories that admit simple table lookups for
witness generation. In the future, we would like to ex-
tend TOPS to more sophisticated witness generation
techniques.

6.1 Acknowledgements

The authors would like to thank Mike Lowry, Tom
Pressburger, and John Cowles for their insights during
discussions that led to this w ork. We w ould also like
to thank the anonymous reviewers for their comments
on the presentation.

References

[1] R. Boyer and J. Moore, Integrating Decision Pro-
cedur esinto Heuristic Theorem Pr overs: A Case
Study of Linear Arithmetic, Institute for Comput-
ing Science and Computer Applications, Univer-
sity of Texas as Austin, 1985.

[2] H. J. Burckert, \A Resolution Principle for a Logic
With Restricted Quanti�ers," L ectur eNotes in
A rti�cial Intelligence, V ol.568, Springer-Verlag,
1991.

[3] C. Green, \Applications of Theorem Proving," IJ-
CAI 69, 1969, pp. 219-239.

[4] N. Jones, C. Gomard, P .Sestoft, Partial Evalu-
ation, and Automatic Program Generation, Pren-
tice Hall, New York, 1993.

[5] R. Keller, \Applying Knowledge Compilation
Techniques to Model-Based Reasoning," IEEE
Expert, April, 1991, pp. 82-87.

[6] J. Komorowski, \An In troduction to P artialDe-
duction F ramework," in Meta-Programming in
L ogic, Lecture Notes in Arti�cial Intelligence, Vol.
649, Springer-Verlag, 1992, pp. 49-69.

[7] M. Lowry, A. Philpot, T. Pressburger, and I.
Underwood, \A F ormal Approach to Domain-
Oriented Softw are Design Environments," KBSE,
1994.

[8] Madden, P. and Bundy, A., \General Techniques
for Automatic Program Optimization and Syn-
thesis Through Theorem Proving," Proceedings of
EWAIC'93, 1993.

[9] Z. Manna and R. Waldinger, \A Deductive Ap-
proach T o Program Synthesis," A CMT ransac-
tions on Pr ogrammingL anguages and Systems,
V ol 2, No 1, Jan 1980, pp. 90-121.

[10] Navigation and Ancillary Infor-
mation F acilit y (NAIF), \SPICE,"
http://pds.jpl.nasa.gov/naif.html.

[11] G. Plotkin, \A Note on Inductive Generalisation,"
Machine Intelligence 5, M. Meltzer and D. Michie
(eds.), Elsevier North-Holland, New Y ork,1970,
pp:153-163.

[12] C. Rich and R. Waters, \Automatic Program-
ming: Myths and Prospects," IEEE Computer,
V ol. 21, No. 8, Aug. 1988, pp. 40-51.

[13] B. Selman and H. Kautz, \Knowledge Compila-
tion and Theory Approximation," JACM, Vol. 43,
No. 2, March 1996, pp. 193-224.

[14] M. Stickel, R. Waldinger, M. Lowry ,T. Press-
burger, and I. Underwood, \Deductive Compo-
sition of Astronomical Soft w arefrom Subroutine
Libraries," CADE-12, 1994.

[15] M. Stickel, \SNARK { SRI's New Automated Rea-
soning Kit,"
h ttp://www.ai.sri.com/ stickel/snark.html, 2000.

[16] J. V anBaalen, \The Completeness of DRAT, A
T echniquefor Automatic Design of Satis�ability
Procedures," International Conference of Knowl-
edge Representation and Reasoning, 1991.

[17] J. Van Baalen, \Automated Design of Specialized
Representations," A rti�cial Intelligence, Vol. 54,
1992.

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

