
A Comparison of Questionnaire-Based and
GUI-Based Requirements Gathering

J. Michael Moore, Frank M. Shipman III
Department of Computer Science

Texas A&M University
College Station, TX 77843-3112 USA

1 409 845 5534
Email: {jmichael, shipman}@cs.tamu.edu

Abstract:

Software development includes gathering information
about tasks, work practices and design options from users.
Traditionally requirements gathering takes two forms.
Interviews and Participatory Design (PD) practices gather
rich information about the task and the domain but require
face-to-face communication between the software
engineers and the users. When such communication is not
possible traditional software engineering frequently relies
on questionnaires and other paper-based methods.
Unfortunately, questionnaires often fail to capture implicit
aspects of user tasks that may be identified through one-
on-one interactions. This project investigates a method of
gathering requirements whereby users, working
independent of software engineers, construct rough
interfaces augmented with textual argumentation. Our
initial study has compared the use of GRC with
questionnaire-based requirements gathering.

Requirements Gathering from End Users

Requirements gathering is a prerequisite for any software
development effort. It is also viewed as the most critical
step [Dardenne, et al. 1991]. The quality of a system
depends on how well the final system meets the
requirements [Finkelstein 1994]. Consequently, the
requirements become the template that the final system
will be compared with to determine success or failure.
Stakeholders, those who often have a vested interest in a
project, are the information source for requirements. It
becomes vital that the requirements be specified and
analyzed in enough detail so that the final system fulfills
the expectations of all stakeholders. However, more often
than not the requirements do not adequately state

stakeholder expectations.

Unsuccessful communication is often at the root of
inadequate requirements specification [Potts, Takahashi,
Anton 1994]. This can lead to requirements that do not
capture the complete expectations of stakeholders.
Stakeholders can include managers, software engineers,
end users, clients, etc. End users provide a rich source of
information about a system since they will directly interact
with the system. They also tend to have a solid knowledge
of the domain and tasks being automated. Thus, a major
goal early in the software engineering process becomes
gathering meaningful requirements from end users.

Potts, et al. [1994], have proposed inquiry-based
requirements analysis. They break the process into three
major phases: Requirements Documentation, Requirements
Discussion, and Requirements Evaluation. Finkelstein
[1994] also talks about seven difficult areas in
requirements engineering. One of those areas is
requirements acquisition. Requirements documentation or
requirements acquisition is the process of getting an initial
set of requirements from stakeholders. Getting this starting
base of requirements offers a unique challenge.

Types of Requirements

Requirements state expectations at two levels. The first are
high level functional requirements that state goals the
system will achieve. The second are more fine-grained
procedural expectations that describe how the system will
behave. As might be expected, it is possible to fulfill a set
of functional requirements in multiple ways using different
instantiations of procedural requirements.

The initial requirements are often a set of broad ranging
goals stated at conception. Frequently, these conceptual
requirements motivate the development of a given software
package. Clients generally know the basic tasks that need
to be performed as well as their ideas about how the
software should “feel” when used. The requirements,
specified at this level, are functional requirements that give

little indication regarding the procedural requirements that
are entailed. The procedural requirements comprise the set
of processes that need to be automated and integrated with
the practices of end users. Getting input from end users
about procedural requirements can be just as important as
the functional requirements.

Methods for gaining the initial set of requirements can
include questionnaires, interviews, task analyses, and goal
based methods that employs a rigid rules based approach
[Dardenne, et al. 1991]. Each method results in a set of
requirements that capture functional and procedural
information to varying degrees.

When answering a questionnaire, individuals feel they are
communicating with another person and this
communication assumes a shared background knowledge
that supports the exchange of information. However, when
attempting to elicit detailed procedural information, these
assumptions can inhibit the successful exchange of ideas.
When attempting to elicit information from a client using
existing requirements specification processes, the client
may not verbalize pertinent information with the
assumption that the person reading the questionnaire
already knows these things implicitly.

The “feel” for users is often difficult to quantify since they
address user attitudes and emotions that vary among
individuals. While users know the functions that the
software should entail, they do not explicate the fine-
grained procedural behavior that they desire. One reason
for this omission is that they assume that the high level
functional descriptions of their tasks imply the detailed
procedural steps and processes that are not made explicitly.
Moreover, there may be tacit knowledge that users cannot
share [Polanyi 1966]. Getting at this useful and necessary
information is inherently difficult and compounded by the
inexact nature of language.

Much of the ambiguity in these high level functional
descriptions can be resolved through requirements
discussion and requirements evaluation. This can be done
as described by Potts, et al., Carrol, et al., or through
interviews and face-to-face interactions. Through these
interactions a rich set of information is available for use
and interpretation. On top of the language itself, facial
expression, body language and intonation provide depth of
meaning to the language. Also, the process whereby
individuals check for understanding and repair breakdowns
in communication occurs more quickly in face-to-face
meetings than outside of that context [Suchman 1987].

Face-to-face communication has many benefits; however,
these interactions may limit the exchange of some
information due to the influence of the software engineer
on the end user. The end user may be guided down a
specific path that matches some expectation that the

software engineer envisions. So human-human interactions
may hinder the productive elicitation of information.

Task analysis can also be used to obtain information about
work practices, even practices that end users are not aware
of. Ethnographic analysis gives a requirements analyst
access to the rich features of human communication
mentioned above, although some of the benefits of face-to-
face communication are lost since methods where the
observer asks questions can cause people to break from the
routine that the observer is trying to capture. As a result
discussion of work practices frequently does not occur
until follow-up interviews.

While a rich source of requirements information,
interviews and task analyses can be time consuming since
they require users and software designers to be co-located
in time and space. The related scheduling issues can draw
out the requirements analysis process, lengthening the
overall software development time-table. Often these
meetings must occur on more than one occasion, further
increasing the time required to develop software.

Some level of face-to-face interactions with users is
necessary in most software development tasks. These
meetings would be aided if the initial set of requirements
represented a more detailed representation of user
expectations. A tool that allows initial requirements
gathering to occur outside the realm of face-to-face
interactions while generating a richer initial set of
requirements has the potential to reduce the amount of user
time actually needed. Furthermore, information may be
obtained that would be difficult to obtain otherwise.

One example of a tool that works to reduce the time
required for requirements gathering is the Requirements
Apprentice (RA) [Reubenstein, Waters 1991]. RA
develops a coherent internal representation of a
requirement from an initial set of disorganized, imprecise
statements. The initial set of data input by the software
engineer is based on interviews with end users. RA does
not interact directly with end users to avoid “the syntactic
complexity of natural language input.” Although RA works
to provide a better set of initial requirements, it still relies
on existing methods of initial requirements acquisition, i.e.
questionnaires or interviews.

Interviews and questionnaires provide needed information
but place the user in the role of informant rather than
participant [Muller, Wildman, White 1993]. Some software
development processes have been shifting towards
participatory design (PD), where users take a more active
role [Carroll et al. 1997]. Many PD activities have focused
on design instantiation and more downstream activities
[Chin, Rosson, Carroll 1997; Wilson, Johnson 1995].
These activities have included modifying prototypes [Kyng
1995; Sutcliffe 1995] and paper designs of interfaces

[Muller, Wildman, White 1993]. One major advantage of
PD is that participants form a personal stake in the product
and are more likely to work to make it succeed. It helps
develop a sense of ownership within the user community.
As with interviews and task analyses, PD requires user
time and thus, can be difficult to schedule and costly.

The problem is that requirements gathering methods tend
to fall into two categories: those which produce rich results
but are expensive (in time and money) and those that are
less expensive but also less informative.

In this paper, we discuss our approach to providing an
intermediate option. After this is a description of the
system we developed to implement our strategy, the
Graphical Requirements Collector (GRC). Then we will
present a study comparing requirements gathered with
GRC and those gathered using questionnaires. Finally, we
will discuss our results, the implications, and future
perspectives for augmenting GRC.

APPROACH

Our approach is to provide a software-based requirements
acquisition tool that interfaces directly with end users. It is
important that users feel involved and have a feeling of
control during the requirements definition process
[Holtzblatt, Beyer 1995]. Hopefully, they will feel more
control over the requirements since they are working with
the computer and not with an “expert” who might
influence their responses. Furthermore, GRC gives end
users an active role in the requirements gathering process.
Hence, as with PD, users feel more ownership of the
software since they have a more direct role in determining
the requirements from inception.

By initially collecting requirements using a software-based
requirements analysis tool, we hope to
reduce the time necessary for interviews
and task analysis. In both of these
processes much time is spent trying to
deduce or draw out information that is tacit
or perceived as understood. Having a draft
of the initial requirements prior to any
meetings may reduce the number of times
users and developers need to co-locate.

Additionally, use of a software tool may
address the issues related to the high-level
functional descriptions people often use.
Humans have certain expectations about
each other’s shared background
knowledge. When working with a
computer, many of those expectations are
not present. End users are focused on the
task that is being automated and the details
of the process. They are also aware that
they are providing information to a

computer that does not have a shared background
knowledge. Accordingly, they may provide more detailed
descriptions of their task than they would in a human-
human interaction. Rubenstein [1991] brings up a valid
point regarding the difficulties of natural language.
Regardless of difficulties encountered parsing and
syntactically analyzing natural language, salient features
can be extracted using rather simplistic methods as long as
interpretations are used in a manner appropriate for
potentially incorrect assumptions [Shipman, McCall 1994]

Within the context of the direct interaction between end
users and the system, end users provide both graphical
design ideas and textual argumentation that are analyzed to
find relationships and requirements.

GRAPHICAL REQUIREMENTS COLLECTOR (GRC)

GRC looks like a graphical user interface (GUI) builder
but is not. The idea is that probable end users sit down and
“make their own” application by creating screens and
dropping widgets onto the screens. It must be made clear to
users that GRC is not an interface design tool, it is a tool to
gather requirements feedback for analysis.

As users go through the process of “making their own”
interfaces, they can provide argumentation about each
widget and window produced. The argumentation includes
a name for the object, a description for what it does, and a
description for why it does this. The argumentation
provides a means for obtaining requirements. At the same
time additional requirements are gathered via the user's
graphical design. Users are free to fill in as little or as
much information as they want. However, they are
encouraged to give as much information as possible to aid
the quest for requirements.

Figure 1: The main GRC screen showing with dialog
listing windowsin current interface.

GRC assumes that users are familiar with applications that
run in a graphical environment such as Windows or the
Mac OS. Thus, users of GRC are expected to have some
knowledge of how widgets are used even if they are not
trained to build effective GUIs. This approach allows users
to communicate using the “language of the GUI,” – i.e.
placing widgets and describing the ensuing action. Users
can create objects and specify actions for features they
consider important in the software package.

Using GRC

When the GRC application is opened, users are presented
with a screen with a list of windows that is initially empty.
Figure 1 shows a dialog providing users with the ability to
add, remove, or open (for edit) interface windows.

When users click on the “Add Window” button or when
they click on the window icon in the toolbar, they are
presented with a blank window. At this point users may
select elements from the toolbar of widgets at the top of the
main window. When users click inside a window, a widget
of the type selected on the toolbar is inserted with default
characteristics. In this way users can build their own
interface. Figure 2 shows a login window of an interface
for course selection created within GRC. This particular
window includes two labels, two text entry fields, two
buttons, and two selection toggles.

Argumentation can be added by double clicking on any
object, including a window. Users are then presented with
a dialog where they can change the name of the object, the
label used for that object on the screen, and the text
describing what the object does as well as why it does it.
Figure 3 shows argumentation describing the reasoning
behind one element of a GRC constructed interface.

Analyzing Argumentation

Once the user creates a partial design, GRC searches the
textual argumentation for information that is potentially
useful for a software designer. Initially, a simplistic
natural language processing approach was used. Next an
information retrieval approach was incorporated.

The software designer can look at the windows, widgets,
and argumentation created in the process of defining what
the system should do. The detected relations provide
additional information to help the developer sort through
the information. The detected relations can indicate
relationships between disparate widgets and windows in
the interface. Additionally, relationships obtained from the
textual argumentation might indicate possible objects in
the system that cannot be represented in the visual
interface system such as a data store or global information
needed but not visibly expressed.

Moreover, relationships could chain together to indicate
data flow and steps in a task that users know but would not
reveal in an interview or that an ethnographer might not
notice during an observation. At any rate, these
relationships can provide a basis for further inquiry.

Natural Language Processing Approach

Potential relationships were extracted based on two
extensible lexicons. One lexicon, the verb lexicon,
contains a list of predefined verbs. The list is not expected
to be exhaustive and contains verbs likely to show up in a
description for a graphical application (e.g. open, close,
save, update, move, modify, etc.). The verb lexicon can
have words added and deleted through a text editor to
provide flexibility. The second lexicon, the name and
noun lexicon, contains names of objects created in GRC by
the users as well as a list of common nouns that show up
within the context of developing a system.

Relationships, as processed, come in two varieties. The
first type is derived from the argumentation provided for
the objects. These Relationships are assumed to have the
form: “nounoverbodirect object” or “verbodirect
object” where the first noun is implied by the object
connected to the argumentation. The nouns and direct
objects come from the name/noun lexicon. An example is
“Button A closes Window B.”

Information Retrieval Approach

Concepts that are important to a domain are likely to
appear frequently in the argumentation. To determine
repeated concepts, word frequencies among all users were
counted and information regarding the number of different
users using a specific word was maintained. The initial
approach removed stop words (words like "the") but did
not include word stemming was not utilized.

More complex concepts may involve combinations of
words. Another algorithm counted the cooccurrence of
word pairs based on the distance between words in text
blocks. Each word was assigned an ordinal position in the
text. Stop words were omitted before the assignment of
ordinal positions. So a sentence such as “The cow jumped
over the moon.” Would result in cow being in position 1,
jumped in position 2, over in position 3, and moon in

Figure 2: User-created interface for
university class scheduling software

position 4. Each word in a block was compared with every
other word in the text block. The distance between two
words was determined by the absolute value of the
difference in the two word’s ordinal positions. Distances
greater than 5 were not included.

STUDY

To investigate the effect of GRC on the requirement
information gathered, we had students provide input on the
design of a new university course registration system.

Subject Selection

The 10 subjects used in this study were non-computer
science graduate students at Texas A&M University.
These individuals had used the telephone-based
registration system at A&M. Some of the subjects had
previous experience with GUI development. All subjects
were familiar with windowing systems.

Task and Conditions

Subjects were informed that we were investigating the
characteristics and design of a computer-based registration
system for students. Moreover, we wanted their input since
students would be the primary users of this system. They
were instructed that they did not have to base what the
system would do on the current phone system. They were
encouraged to express new and unique ideas in their
responses to the 11 questions given to guide their thoughts
(Table 1). The importance of detailed information was
emphasized to all subjects.

Each subject was assigned to one of two groups. The first
group (six subjects) used GRC to build an interface and
provide argumentation using the guiding questions. The
second group (four subjects) answered the questions in the

form of a questionnaire. In both cases, the subjects worked
individually.

The GRC group was given a short supervised training
regarding the use of GRC. They were shown explicitly
how to add windows, widgets, and argumentation. At this
point they were given the introduction and the questions
and allowed an hour to develop their interfaces.

The questionnaire group was given a paper that included
pertinent information about the task and the 11 questions.
They were allowed to take this information and work with
it at their convenience.

RESULTS

The GRC subjects produced interface artifacts that
represented their view of what an on-line registration
system should do – Figures 2 & 4 are two examples of
login windows constructed during the study. In some cases
the subjects provided rich textual argumentation along with
the interfaces. Figures 3 & 5 show parts of the textual
description provided by one subject. In other cases the
interface itself was provided with very little argumentation
attached, as in Figure 6. Similarly, the questionnaires
varied in the amount of textual argumentation provided in
response to the questions.

Subjects filling out questionnaires did not spend as much
time on the task as did GRC users. The instructions for
questionnaire subjects instructed them to answer the
questions, providing information they thought was

1. What do you think an online registration
system should do?

2. What are other features that this system
should have?

3. How would you use these features?

4. How would you add classes?

5. How would you drop classes?

6. How would you change classes?

7. What are your concerns about such a
system?

8. How comfortable would you be with this
system?

9. What do you like about the current system?

10. What do you not like about the current
system?

11. What features would enhance the current
system?

Table 1: Guiding questions given to study subjects

Figure 3: GRC argumentation window attaching
textual information to interface objects

important without indicating any particular time limit or
goal. Even so, it is somewhat surprising that the volume of
textual argumentation was higher using GRC, where
subject attention focused on graphical construction. GRC

subjects averaged 218.7 words each while questionnaire
recipients averaged 128 words each. One thing that became
apparent during the study is that the questionnaire format is
not “fun” or well received by subjects.

Procedural vs. Functional in Textual Argumentation

To compare the argumentation provided in the two
conditions, the text was examined for requirements of the
two broad categories: functional – statements of features
that should be included in the system; and procedural –
descriptions of how features should be instantiated and
used.

The text responses from the questionnaires were read and
categorized by hand as to whether a comment was
functional or procedural. The requirements captured in
GRC were processed in the same way as the questionnaire
responses with an additional pass using the automated
natural language processing algorithm described
previously. The results are shown in Table 2.

Method Functional Procedural

Questionnaire
(human)

40
(10/person)

8
(2/person)

GRC
(human)

30
(5/person)

100
(16.66/person)

GRC
(automated)

0
(0/person)

23
(3.83/person)

Table 2: Number and types of
relationships found in text

The functional requirements that were generated in the
questionnaires were broad ranging. Responses varied from
very general statements such as “Security” in response to
question 7 (“what are your concerns about such a system”)
to more specific statements like “It should allow the user to
add, drop or change classes and find out the total fees” as
an answer to question 1 (“what do you think an online
registration system should do.”)

The procedural requirements identified included
descriptions of both simple and complex interactions
among features and interface components. An example of
a simple interaction is "Should link to a page showing fee
schedule" for a button labeled "Fee Stmt." An example of
a complex interaction is "Asks the user if he/she would like
to see the class details and if the user responds in the
affirmative, the system connect to the TAMU/School
course schedule" for a radio button labeled "Class Details."
This demonstrates a more complicated structure including
decision making and expected responses.

Figure 5: Example of rich argumentation

Figure 6: Example of minimal argumentation

Figure 4: Another user-generated interface for university
class scheduling software

Graphical Artifacts

The analysis of procedural and functional requirements did
not include the visual artifacts. The GRC participants
constructed many different interfaces to implement the
same functionality. Some of the interfaces were simplistic
as illustrated in Figures 2 & 4. However, some of the
interface artifacts were somewhat complex as shown in
Figures 7 & 8. For example, both of these interfaces
convey information using a tabular format.

The organization of widgets on a screen provides
procedural information about how the software should
behave and how the information should be presented.

Original Ideas vs. Restatement

Both the questionnaires and GRC provided for a basic set
of requirements that transferred the current phone
registration functionality to a computer based online
system. While providing more procedural information on
how to implement the features, the GRC text seldom went
beyond the existing functionality of the phone system.
Conversely, the questionnaire provided more original ideas
that could be incorporated into a new system without
expressing much procedural information.

In the context of feature generation, questionnaires and
GRC text provide either a restatement of existing
functionality or a statement of new ideas. The GRC text
resulted in more procedural detail of the current system’s
functionality while the questionnaires produced more new
functional ideas.

Word Frequencies

The term frequency analysis of the GRC data identified.
319 words. Each word was identified with the number of
users who used that word. 3 words were used by all six
users (“course”, “student”, and “add”). 67 words were
used by two or more different users. 249 words were used
by single users where 180 of those words were single
occurrences. These included misspellings such as “teh”
instead of “the".

Stemming was not used. Consequently, words that could
count as the same word were not combined. For example,
the words “add”, “added”, “adding”, and “adds” each
showed up separately. A slightly improved algorithm
would result in even fewer terms for the software engineer
to consider.

The word adjacency algorithm was performed on each
user’s data. The resulting list showed words that were
used near to each other. There were many combinations of
words that appeared more than once. For example "add"
and "course".

Deictic Reference

Deictic references are methods of identifying an object
using a physical or linguistic reference. Often in one on
one interaction the deictic reference is accomplished using
gestural indexing such as pointing a finger or touching the
referent object itself. Linguistically, deictic referencing is
accomplished through the use of pronouns.

While working with GRC, users create widgets and
windows. When that widget or window is double clicked
an argumentation window opens. Users can use pronouns
such as “this” to refer to the associated widget. GRC users
did utilize deictic references in their textual argumentation.
The GRC analysis heuristics did not consider this form of
reference. Consequently, the GRC text analysis heuristic
did not recognize many of the relationships embedded in
the text.

GENERAL DISCUSSION

The study gives new insight into combining textual
argumentation with visual artifacts. Using GRC resulted in
a higher volume of argumentation as well as influencing
the types of information that subjects provided.

Figure 7: User-generated interface showing
relatively complex construction

Figure 8: User-generated interface of an Add Window

Types of Information

The most striking difference between gathering textual
argumentation using a questionnaire or GRC was the type
of information elicited. The questionnaire process
produced mainly functional information with little
information regarding procedural details. This was
consistent with our expectations that people feel they are
talking to another person when filling out a questionnaire
and thus do not provide details since it is assumed that the
software engineer will fill in the gaps with shared
background knowledge.

This was illustrated in some of the questionnaire responses
such as answering questions 4, 5 and 6 collectively with
“The way you select your preferences on any web page.”
This vague response tells little about how the actions
should be implemented, but the individual probably had a
clear picture in his/her mind when making the statement.
She/he probably thought that the statement was clear.
However, there are many ways of implementing things on
web pages. As a result, this would have to be clarified in
future face-to-face conversations. In GRC, this information
is more clear based on the way individuals choose to
represent the relevant portion of the interface. A GRC
response to questions 4, 5, and 6 is voiced through various
implementations for adding classes as seen in Figures 7, 8,
and 9.

Information about interface interaction and organization is
readily collected using GRC. With GRC the person has to
think concretely about the process and product and is not
free to use ambiguous functional descriptions.
Argumentation collected in GRC provided much clearer
descriptions of what happens in the system than did
questionnaire results. For example, one potential feature of
the class scheduling system is access to degree plan
information. This requirement was stated several times in
the questionnaires but in GRC one subject described its
instantiation in a much clearer fashion. Argumentation for
the “show degree plan” check box (Figure 2) states: “to be
selected by student if he wants to see his degree plan on a
separate window always while using the system.” Here the
software engineer is told not only that degree plan
information should be available, but that the person wants

the option of being able to see this information
concurrently with registration information.

The use of graphical artifact construction through interface
building provided multiple procedural options for many
functional features. For example adding classes is a vital
feature for a course registration system. All of the GRC
participants incorporated this feature into their interfaces in
some way. Although the function is the same several
implementations were elicited. Figure 7 portrays a starting
point where adding courses is one choice. The same GRC
user created an add window (Figure 9) to implement the
add choice from Figure 7. This add window allows users
to scroll through a list of choices and then add courses
from the list. Figure 8 shows another user’s
implementation of an add window. In this case the
information is presented in a tabular form and the user
presses a button next to the corresponding course to add it.

An interesting side effect of GRC was the apparent lack of
functional requirements with GRC users generating half
the average number as questionnaire respondents.
However, this should not be viewed as a loss of functional
requirements – many explicit functional requirements from
questionnaires became implicit in the collection of GRC
procedural information. For example, the questionnaires
brought up the need to add classes to a schedule. Such a
mention of a feature was categorized as functional. The
GRC participants included the same feature, but showed
procedural information regarding interface implementation
rather than stating only its function.

One unexpected outcome of the study relates to the
generation of ideas for new features in the class scheduling
software. The questionnaire respondents generated more
new features (not part of the existing phone-based system)
than did subjects using GRC. This illustrates the danger of
constraining ideas by grounding users in a tangible
environment. GRC users provided more details about their
needs and more specific design options, but because they
were focused on procedural details it seems they did not
spend as much time thinking outside their current design.

Artifact Construction and Textual Argumentation

The study results indicate another notable difference was in
the quantity of textual argumentation produced by both
methods. GRC users produced a much higher volume of
text than the questionnaire respondents. One factor that
seems to have contributed to this was the subject
engagement resulting from their construction of artifacts.
Often when people are asked to produce information, they
are struck with the blank slate syndrome. In this state, they
know information and have opinions that would be
relevant to the question but are unable to think of them.
Grounding requirements gathering in artifact design allows
people to more readily express themselves. GRC users are
like designers involved in a "reflective 'conversation' with

Figure 9: Another user-generated interface
 of an Add Window

materials of the design situation" (i.e. windows and
widgets) [Schön 1992]. In this way the process of artifact
construction engages users in requirements mining, thereby
enhancing textual argumentation.

Automated Processing

The automated analysis of argumentation by GRC
produces a set of potential relations and words that can be
used as both indices into the textual argumentation and as
summaries. The relationships identified in this study
included both details of interface design and high-level
system considerations. The system-level entities
recognized that were not represented in the user-
constructed interfaces included a “network” and a
“database.” These provide the software engineer insight
into characteristics of the system that users know are
necessary but might not consider mentioning until faced
with expressing a concrete representation of the task.
These implied objects were not found in the questionnaire
results, likely because the system-level artifacts are
strongly related with procedural information rather than
functional information.

Much potentially useful information was omitted since the
relation recognition algorithm did not recognize deictic
references. People establish an object and then talk about
it using deictic references, usually referring to the object by
name when there is ambiguity in the reference. While
typing the deictic reference into the argumentation, users
were grounded in the widget that they were referring to.
There was no ambiguity for the user. The ambiguity
surfaces when argumentation is examined out of context.

The automated processing identifies many procedural
details that the user expressed through GRC. The software
engineer can use these summaries to aid the traversal of the
argumentation information space. This reduces the
necessity to explore each object in the interface.
Additionally, the approach used to generate the
relationships can help cut through the excess text that may
be present and give the essence of artifact features.
Identified potential relations provide the software engineer
with an alternative to their own interpretation of the text.
By providing the list of potential relations, word
frequencies, and word pairings and the related distance,

GRC provides a map of where to look and what to look for
within the user’s construction.

Future Work

This study indicates the GRC approach of using
computational tools to elicit user requirements has
potential. It also points out how improving the GRC
system could enhance these outcomes.

Comparing the content produced through questionnaires
with those produced through GRC shows that qualitatively
and quantitatively different information is elicited. The
next step is effectively presenting that information to a
software engineer. Currently, the simplistic algorithms
used to automatically analyze GRC do not provide
sufficient information to automatically create requirements
from user input. However, useful information is obtained
through GRC.

The key is to present the information to a software
engineer in a meaningful and easy to access way. The
information space produced through this requirements
elicitation process is quite large and represents multiple
perspectives as indicated by Nuseibeh, et al. [1993]. A
software designer probably will not want to manually go
through each constructed window and widget to get at
argumentation. Moreover, the software engineer may want
to jump between similar windows from different users to
see how users differed and what they have in common.

GRC can use the algorithms presented to provide an index
into the information space created by the users to help
navigate through the multiple perspectives generated by
end users. A word frequency list shows terms that are
likely to be important to the project. In our study, GRC
can create links into the information space that a software
designer can follow to see the words in context as well as
see the constructed graphical artifacts. The relations
created in the natural language processing scheme can
provide quick access to where those more complex
concepts occurred in different user’s constructed artifacts.
In a similar way the word pairings and distances can be
linked to where they occur.

Our study points to the next phase of the GRC project: a
system where software engineers look at a frequency list, a
listing of natural language sentences, or even word pairs to
begin an exploration of the information space (Figure 10).
The interface will provide a view of the graphical construct
(i.e. the user created window). Also available at the same
time is the textual argumentation created by users for
whichever graphical piece is selected (e.g. button, text
area, or window). The software engineer also has links to
other similar artifacts created by that user or other users.

Figure 10: Hypothetical
Software Engineer’s Interface

Graphical Construct

Link to similar
User artifact

Link to similar
User artifact

Link to similar
User artifact

Link to similar
User artifact

Widget or Window user
argumentation

CONCLUSIONS

Requirements gathering in GRC garnered valuable
information for a software engineer. GRC produced more
procedural options to use to construct a software solution.
The process of interface artifact construction allowed end
users to express information that a questionnaire failed to
elicit. The analysis algorithms also provide information
that can be used to index into the information space created
by end users. This information space can be used to give a
software engineer a better initial idea of the design space
for a given project that can be expanded using other
requirements engineering processes.

Acquiring requirements from end users with GRC
promises to be a good starting point for face-to-face
communication between software engineers and their
clients. GRC provided a better set of procedural
requirements than questionnaires did, giving a more
concrete idea of how to do the task rather than only
ascertaining what needs to be done at a functional level.
However, it was not able to produce as many
recommended new features as questionnaires.
Consequently, GRC should not be viewed as a replacement
for existing requirements gathering methods – it should be
viewed as another tool in the software engineering toolkit.
Questionnaires followed by GRC could provide an
excellent basis for guiding software engineers. The
questionnaires providing functional insight and GRC
providing procedural details.

REFERENCES

1. Beyer, H. and Holtzblatt, K. (1995) Apprenticing With
the Customer, Communications of the ACM, Vol. 38,
No. 5, May, pp. 45-52.

2. Carroll J.M., Rosson, M.B., Chin, G. and Koenemann,
J. (1997) Requirements Development: Stages of
opportunity for collaboration needs discovery,
Designing Interactive Systems: Processes, Practices,
Methods, & Techniques, Proceedings of DIS'97, pp.
55-64.

3. Chin, G., Rosson and M.B., Carroll, J.M. (1997)
Participatory Analysis: Shared Development of
Requirements from Scenarios, Human Factors in
Computing Systems, Proceedings of CHI 97, pp. 162-
169.

4. Dardenne, A., Fickas, S., and van Lamsweerde, A.
(1991), Goal-directed Concept Acquisition in
Requirements Elicitation, Proceedings of 6th

International Workshop on Software Specification and
Design, pp. 14-21.

5. Finkelstein, A. (1994). Requirements Engineering: a
review and research agenda, Proceedings of 1st Asia-
Pacific Software Engineering Conference, pp. 10-19.

6. Holtzblatt, K., Beyer, H. (1995) Requirements
Gathering: The Human Factor, Communications of the
ACM, Vol. 38, No. 5, May, pp. 30-32.

7. Kyng, M. (1995). Creating Context for Design. In
Carroll, J.M. (Ed.), Scenario-Based Design:
envisioning Work and Technology in System
Development, J. Wiley, NY, pp. 85-107.

8. Muller, M.J., Wildman, D.M., and White, E.A. (1993).
'Equal Opportunity' PD Using PICTIVE.
Communications of the ACM, Vol. 36, No. 4, pp. 64-
66.

9. Nuseibeh, B., Kramer, J. and Finkelstein, A. (1993)
Expressing the Relationships Between Multiple Views
in Requirements Specification, Transactions on
Software Engineering, Vol. 20, No. 10, pp. 187-196.

10. Polanyi, M. (1966). The Tacit Dimension. Garden
City, NY: Doubleday.

11. Potts, C., Takahashi, K. and Anton, A.I. (1994),
Inquiry-Based Requirements Analysis, IEEE Software,
Vol. 11, Issue 2, pp. 21-32.

12. Reubenstein, H.B. and Waters, R.C. (1991), The
Requirements Apprentice: Automated Assistance for
Requirements Acquisition, IEEE Transactions on
Software Engineering, Vol. 17, No. 3, pp. 226-240.

13. Schön, D. (1992) Kinds of seeing and their role in
design, Design Studies, Vol. 13, No. 2, April.

14. Shipman, F. and McCall, R. (1994) Supporting
Knowledge-Base Evolution with Incremental
Formalization, Human Factors in Computing Systems,
Proceedings of CHI ’94, pp. 285-291.

15. Suchman, L. (1987). Plans and Situated Actions,
Cambridge, UK: Cambridge University Press.

16. Sutcliffe, A. (1995) Requirements Rationales:
Integrating Approaches to Requirements Analysis,
Designing Interactive Systems: Processes, Practices,
Methods, & Techniques, Proceedings of DIS'95, pp.
33-42.

17. Wilson, S. and Johnson, P. (1995) Empowering users
in a task-based approach to design, Designing
Interactive Systems: Processes, Practices, Methods, &
Techniques, Proceedings of DIS'97, pp. 25-31.

