
Debugging Overconstrained Declarative Models Using Unsatisfiable Cores

Ilya Shlyakhter
MIT CSAIL, Cambridge, MA

ilya shl@mit.edu

Robert Seater
MIT CSAIL, Cambridge, MA

rseater@mit.edu

Daniel Jackson
MIT CSAIL, Cambridge, MA

dnj@lcs.mit.edu

Manu Sridharan
UC Berkeley, Berkeley, CA

manu s@cs.berkeley.edu

Mana Taghdiri
MIT CSAIL, Cambridge, MA

taghdiri@mit.edu

Abstract

Declarative models, in which conjunction and negation
are freely used, are susceptible to unintentional overcon-
straint. Core extraction is a new analysis that mitigates this
problem in the context of a checker based on reduction to
SAT. It exploits a recently developed facility of SAT solvers
that provides an “unsatisfiable core” of an unsatisfiable
set of clauses, often much smaller than the clause set as a
whole. The unsatisfiable core is mapped back into the syn-
tax of the original model, showing the user fragments of
the model found to be irrelevant. This information can be
a great help in discovering and localizing overconstraint,
and in some cases pinpoints it immediately. The construc-
tion of the mapping is given for a generalized modelling
language, along with a justification of the soundness of the
claim that the marked portions of the model are irrelevant.
Experiences in applying core extraction to a variety of ex-
isting models are discussed.

1. Introduction

Along with its many benefits, declarative mod-
elling brings the risk of overconstraint. An overconstrained
model trivially satisfies safety properties; in the ex-
treme, it has no bad transitions because in fact it has no
transitions at all.

The risk of overconstraint in declarative specification
languages such as Z [18] and VDM [12] was recognized
long ago, but only very limited automatic tool support exists
to mitigate it. In Z, preconditions are implicit; it is regarded
as good style for an operation’s precondition to appear ex-
plicitly in the text of the operation’s schema. This discipline
results in proof obligations (that the explicit conditions im-
ply any implicit preconditions). Checking these obligations
is no easier than checking any other property of a Z specifi-

cation1. Similarly, in VDM, the ‘implementability’ criterion
leads to a similar obligation. Because of the difficulty of dis-
charging proof obligations automatically, most tools for Z
and VDM simply extract the proof obligations but leave the
user to determine their validity.

Analysis tools that support simulation or the checking
of liveness properties can mitigate the problem of overcon-
straint, but the risk remains: a safety property may hold be-
cause of a subtle overconstraint that may not be noticed
even if a host of liveness checks have passed. Moreover,
counterexamples to liveness may themselves be ruled out
because of overconstraint.

Even when a modeler suspects an overconstraint, iden-
tifying the conflicting constraints is often frustrating. Cur-
rently, the only systematic technique for finding causes of
conflict in a declarative model is to manually disable indi-
vidual constraints until the culprits are identified. This task
can be lengthy and runs the risk of introducing new er-
rors into the model. The model checker provides no help
to the user in finding the overconstraint, other than to re-
port whether a given version of the model is still overcon-
strained. As discussed in Section 5, ‘vacuity testing’ ad-
dresses this problem [15, 1, 3, 20], but does not apply to
declarative models and helps debug only overconstrained
properties, not overconstrained models.

This paper presents core extraction, a new approach to
addressing the problem of overconstraints in declarative
models. Satisfiability solvers have recently developed a fa-
cility for extracting the unsatisfiable core of a CNF formula:
that is, a subset of the clause set sufficient to cause a contra-
diction [21, 7]. For declarative model analyses that can be
cast as satisfiability instances, the unsatisfiable core can be
mapped back onto the model. In other words, we can iden-
tify the parts of the model responsible for producing the un-
satisfiable CNF core. Those parts, by themselves, suffice to

1 And may indeed be harder, since the precondition of an operation in-
volves a higher-order quantification over its state components.

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

produce an overconstraint, and their identification can help
the user find the overconstraint.

Showing an unsatisfiable core may also alert the user
to the unexpected presence of an overconstraint. If almost
the entire formula is relevant (i.e. necessary to prevent-
ing counterexamples to the property being checked), it will
raise confidence that the system description is not overcon-
strained, that the safety property is not vacuous, and that it
holds (at least for the bounded domain). But if the analy-
sis highlights only a small part of the system description (or
does not highlight the property being checked), it indicates
as strong possibility that the model is unintentionally over-
constrained. If it highlights only the safety property, it sug-
gests that the property is a tautology, and thus vacuously
satisfied.

Our presentation is set in the context of an analysis
for first-order relational logic that has the flavor of model
checking. In short, a system is specified as a formula, whose
models (which correspond to the behaviours of the system)
assign values to relations of various arities. A safety prop-
erty is checked by conjoining its negation to this formula;
solutions to this new formula are counterexamples. If there
are no solutions, and the model is correct, then the property
being checked holds (up to the specified scope). The for-
mula is translated to a propositional formula by bounding
the carrier sets from which the relations draw the values of
their atoms. Models of the propositional formula are found
by a SAT solver, and translated back into the relational do-
main for display to the user. This analysis scheme has been
described previously [10]; until now, if no counterexample
were found, no further information would be given. This
lack of information has been the a complaint from users of
our tool.

Although we developed these techniques in the context
of the declarative modeling language Alloy, which we will
use to present case studies and examples. However, both the
technique and its implementation were intentionally kept
much more general; they are sufficiently modular to apply
to any language which is reducable to SAT in a structure-
preserving fashion 2. Concequently, our techniques should
also apply in related settings such as BMC [2] and plan-
ning [13]. We provide a simple semantic guarantee of cor-
rectness, assuring the user that deleting constraints identi-
fied as irrelevant will preserve unsatisfiability of the model.

The contributions of this paper include:

• A recognition of the problem of overconstraint in
declarative models, with discussion of why ex-
isting techniques, including vacuity testing and

2 Our techniques and implementation still apply to non-structure-
preserving translations, but the more structure is lost, the less use-
ful (larger and less likely to pinpoint the source of an overconstraint)
the extracted core will be.

the checking of liveness properties, do not elimi-
nate it;

• A simple but effective method for discovering and
localizing overconstraint in the context of checkers
based on reduction to SAT, by exploiting the unsatis-
fied core facility of SAT solvers;

• A justification of the semantic guarantee made by the
analysis at the level of the source of the model, for a
generalized modelling language; and

• Some reports on preliminary experiments applying an
implementation of the method to a variety of models,
demonstrating its promise and highlighting challenges
for future work.

The problem of overconstraint and the benefits of core
extraction are illustrated first on a toy example (Section 2).
The framework is described for a generic constraint lan-
guage, along with an argument for its soundness (Section 3).
A variety of experiences in using our implementation of
core extraction are discussed (Section 4). We compare our
technique to vacuity testing, which provides similar infor-
mation to operational modelers (Section 5). For readers un-
familiar with declarative modeling, an appendix explains its
relationship to operational modeling, and the circumstances
in which it is particularly beneficial.

2. A Toy Example

To give a flavor of declarative modelling, and to illustrate
the use of the new analysis, consider the problem of check-
ing the design of a web caching scheme. Our challenge is to
design the Get operation that obtains a page from its owner,
or from a cache. The correctness of Get will be contingent
on some assumptions about the freshness of pages deliv-
ered by the owner; we will record these as an invariant.

A complete (albeit simplified) Alloy model for this prob-
lem is shown below:

module webcache

sig Time {}
sig URL {}
//A Server records (at most) one Page
// per URL at any given time.

sig Server {page: Time -> URL ->? Page}
//Page expiration is modeled by a set
// of times at which the page is fresh.

sig Page {life: set Time}

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

//Page recorded by any Server is fresh
fact ServerFresh {
all s:Server, t:Time,

u:URL, p:Page |
(t -> u -> p) in s.page =>

t in p.life }

//The cache may drop & add entries
// from the owner, but no stale pages
// may remain afterwards
fun Get (t,t’:Time, cache,owner:Server,

u:URL, p:Page) {
cache.page[t’] in cache.page[t]

+ owner.page[t] -
{u:URL, p:Page | t’ not in p.life}
=> p in (cache+owner).page[t’][u] }

//result of Get is always a fresh page
assert Freshness {
all t,t’:Time, cache,owner:Server,

u:URL, p:Page |
Get (t, t’, cache, owner, u, p)
=> t’ in p.life }

check Freshness

A detailed knowledge of Alloy is not needed to grasp the
point of the example, but some explanation is in order. A
fuller explanation of Alloy may be found elsewhere [11].

Each signature (labelled sig) introduces a set of atoms:
Time for the atoms representing moments in time, URL for
the URL’s of documents, Page for the contents of docu-
ments, and Server for the caches and owners. A field de-
clared within a signature is simply a relation of some arity,
whose columns are the sets given, and implicitly, in the left-
most position, the signature itself. Thus life is a binary
relation from Page to Time, associating with each page
the set of times for which it is current, and page is a rela-
tion of arity 4, containing a tuple (s,t,u,p) when server
s maps URL u to page p at time t. The question mark in
the declaration of the field page indicates that at most one
page is associated with a given server, time and URL.

The remaining paragraphs of the model are formulas that
play different roles. An assertion is a formula that is con-
jectured to be valid; here Freshness asserts that the re-
sult of a Get is always a fresh page. The assertion makes
use of a function, Get, which is a parameterized formula
that is simply inlined, and (implicitly) any global facts. It’s
arguments are two times(v and v’), two servers (cache
and owner), a URL (u), and a page (p). In this case, the
fact ServerFresh is implicitly applied, which states that
servers always yield fresh pages. The command check
Freshness instructs the tool to search for counterexam-

ples to the assertion; by default, the search is conducted in
a ‘scope’ that limits each basic set to 3 atoms.

The formulas within the fact, function and assertion are
written in an ASCII form of first-order logic, enriched with
relational operators. The keyword in is the subset opera-
tor, + is set union, and - is set subtraction. The dot and
square brackets are two variants of a single relational im-
age operator with different precedence and argument order.
For example, the expression

(cache+owner).page[t’][u]

does several things: first it takes the union of the two sets
cache and owner; then it takes their image under the re-
lation page; then takes the image of first the time t’ un-
der this relation, yielding a relation from URL’s to pages
representing the aggregate contents of cache and server at
time t’; then takes the image of the URL u under this re-
lation; and finally gives the set of all pages associated with
the URL u in cache or owner at time t’.

The times t and t’ represent the moment just before
and just after the Get occurs. The function as a whole can
be read as follows: the mapping from URL’s to pages in the
cache after (cache.page[t’]) is a subset of the union
of the mapping before (cache.page[t]) and the map-
ping in the owner (owner.page[t]), minus all entries
whose pages are no longer fresh ({u:URL, p:Page |
t’ not in p.life}). In other words, the cache is at
liberty to drop any entries, and to add any entries from the
owner, so long as no stale pages remain afterwards. The fact
is the crucial invariant recording the assumption that pages
in a server are always fresh.

A counterexample to an assertion is a model of its nega-
tion. This model gives values to the set and relation con-
stants. Because our tool skolemizes quantifiers, it gives wit-
nesses too. In this case, for example, if the assertion were
not valid, the tool would give values for the two relations
page and life, and witnesses for the particular times t
and t’, cache, owner, page and URL. Note that there is no
built-in notion of state machine; the ‘states’ before and af-
ter the operation are obtained by examining how the rela-
tions map the times t and t’.

In this case, there is no counterexample (and there would
be no counterexample even in a larger scope). We run the
unsat core analysis; its output is an abstract syntax tree, an-
notated (roughly speaking) with information about which
nodes are relevant, and, for those representing formulas
with free variables, for which values of the variables. We
examine the tree top-down, looking for formulas that are
deemed irrelevant. Surprisingly, the entire first line of Get
is irrelevant: even though the page may be taken from the
cache (as specified in the second line), how the cache is up-
dated is irrelevant.

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

What’s wrong? First we check that the page is taken from
the new and not the old value of the cache. No problem
here; the second line of Get correctly refers to t’ and not
t. Then we see the blunder: the fact states that all servers
yield fresh pages, including the cache, so the assertion fol-
lows trivially from it. This might seem like an absurd error
to make, but in fact, an author of this paper made this er-
ror unwittingly during the development of this example be-
cause he started with a more elaborate model that distin-
guished caches from servers, then simplified it erroneously.

To fix the model, we partition the set of servers into
caches and owners, modify the fact to constrain only own-
ers, and declare the arguments of Get to belong to the ap-
propriate subsets:

module webcache

sig Time {}
sig URL {}
sig Server {page: Time -> URL ->? Page}
part sig Cache, Owner extends Server {}
sig Page {life: set Time}

fact OwnerFreshness {
all s: Owner, t: Time,

u: URL, p: Page |
(t -> u -> p) in s.page =>

t in p.life }

fun Get (t,t’:Time, c:Cache,
o:Owner, u:URL, p:Page) {

c.page[t’] in c.page[t]
+ o.page[t] -

{u:URL, p:Page |
t’ not in p.life} p in
(c+o).page[t’][u] }

assert Freshness {
all t,t’:Time, c:Cache,
o:Owner, u:URL, p:Page |
Get (t, t’, c, o, u, p)
=> t’ in p.life }

check Freshness

Running the analysis again shows that almost all formulas
in the function and fact are relevant. The expression

c.page[t] + o.page[t]

in the first line of Get, however, is marked as irrelevant.
This makes sense though; since all stale pages are removed
from the cache (by the set subtraction that follows), the
source of additional pages is irrelevant. That the remaining
formulas are deemed relevant gives us some confidence that

our model is no longer vacuous; the irrelevance of this par-
ticular expression suggests that an assertion about the au-
thenticity of a page is needed.

As another example, suppose we erroneously wrote

p in c.page[t’][u]

for the second line of Get, so that the page is always taken
from the cache, and never from the owner. In this case, the
fact OwnerFreshness is found in its entirety to be irrel-
evant: not surpringly, since the cache from which the page
is drawn has been purged of stale entries.

3. The Core Extraction Algorithm

Core extraction is run only on formulas already found to
be unsatisfiable: either simulations that have no behaviours,
or checks that have no counterexamples. It runs fully auto-
matically without user intervention. Its result is an identi-
fication of fragments of the original model that were irrel-
evant to demonstrating unsatisfiability. In our implementa-
tion, these fragments are shown as a colored abstract syntax
tree that is synchronized with the text in an editor. An ir-
relevant fragment is colored red, and may be a subformula
or an expression. For quantified formulas, the tree indicates
for which values of bound variables the body formula is ir-
relevant.

This section presents the algorithm on which our imple-
mentation is based, in a generalized form. It starts with an
abstract syntax tree (AST) in which there are no quantifiers;
our implementation involves an additional step of mapping
back from this tree, resulting from grounding out quanti-
fiers, to the original syntax tree.

The correctness criterion for the algorithm is that the
claim of irrelevance is sound. More precisely, the function
computed at any AST node marked as irrelevant can be re-
placed by any function that leaves the AST well formed (in
particular a constant function of the appropriate type), with-
out making the resulting AST satisfiable. An irrelevant child
of an AND node, for example, can be read as the constant
true. In some cases, as here, this means that the node can
be removed entirely. A roadmap of how the algorithm fits
into the overall use of the tool algorithm is shown in Fig-
ure 1.

3.1. Constraint Language

We define an abstract constraint language for express-
ing formulas on a collection of variables vi ∈ V . A for-
mula is expressed as an abstract syntax tree, in which each
node computes a predefined function of its children. The
root node computes a Boolean function, which becomes the
value of the formula as a whole. The leaf nodes are vari-
ables. We denote the universe of computable values by U .

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

Constraint
Language

as an AST
 Model
 User’s SAT

Solver

SAT
Solver

"Unsatisfaible"
AST browser
showing
relevant subset

Altered AST

Unsatisfiable
CNF Core

Annotated
CNF Clauses

Clauses
CNF

CNF Conversion

Boolean
Encoding Allocation

Variable

CNF Conversion

Allocation
Boolean
Encoding

Variable

Model
Analyze

Change or
Delete nodes
marked as
irrelevant

Analyze
Model

Highlight AST Nodes Which
Yielded Clauses in the Core

SatisfiabilitySubsetA
na

ly
si

s
M

od
el

in
g

User’s View Core Extraction Algorithm SAT Solver

Superset Satisfiability

G
ua

ra
nt

ee

2

1

3

5 6

4

Figure 1. A Roadmap to Core Extraction. (1) A model is created in any constraint language which is
reducible to SAT in a structure preserving fashion. (2) During translation to CNF, each clause gen-
erated is annotated with the AST node from which the clause was produced. (3) A SAT solver (used
as a black box) determines that the model is unsatisfiable and extracts an unsatisfiable core (a sub-
set of the CNF clauses which is also unsatisfiable). (4) The core is mapped back to the original model
by marking (as “relevant”) any part of the AST indicated by the annotation of any clause in the CNF
core. The analysis is now complete. The remaining steps concern guarantees made to the user about
what the markings on the AST mean; they are not actually executed during normal use of the tool.
(5) The user is guaranteed that changing the unmarked (non-relevant) portions of the AST will leave
the model unsatisfiable. (6) Specifically, the CNF corresponding to the altered AST will be a super-
set of the unsatisfiable core previously extracted, and thus will itself be unsatisfiable.

The set F of node functions has elements of the form fi :
U∗ → U Trees are thus defined by Tree = F ×Tree∗+V .
3. An assignment from U to each vi ∈ V induces an assign-
ment from U to each AST node; the value of a leaf node is
the value of the AST variable at that node, while the value of
a node n = Tree(f, ch) is computed by applying the node

3 The sets U and F are determined by the semantics of the particu-
lar constraint language. For example, for Alloy [11], U contains rela-
tional and Boolean values, and F includes relational and Boolean op-
erators. The particular semantics are unimportant for this paper.

function f to the sequence of values assigned to the chil-
dren ch. Testing satisfiability of the AST involves finding
an assignment to the variables vi which induces the value
true in the root node, or determining that none exists.

3.2. Translation

Satisfiability of the formula can be tested by convert-
ing it to a Boolean formula in conjunctive normal form
(CNF). The translation framework is illustrated in Figure 2.

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

To convert an AST to CNF, we allocate to each AST node
n ∈ Tree a sequence of Boolean variables bv(n) ∈ BV ∗

representing the node’s value. The sequences of Boolean
variables allocated to two nodes are identical if these are
leaf nodes with the same AST variable, otherwise the se-
quences are disjoint. We define functions enc : U → Bool∗

and dec : Bool∗ → U for encoding and decoding values in
U as binary strings. An assignment of Boolean values to
all the Boolean variables allocated for AST nodes thus cor-
responds to assigning a value from U to each AST node.
An assignment of U values to AST nodes is consistent if
the value at each non-leaf node equals the result of apply-
ing the node’s node function to the sequence of U values as-
signed to the node’s children. We translate an AST to CNF
by generating CNF clauses on the Boolean variables allo-
cated to AST nodes, so that the conjunction of these clauses
is true of a given assignment to Boolean variables iff the
Boolean assignment corresponds to a consistent assignment
of U values to AST nodes.

The translation is done separately for each AST node.
For each node, we produce a set of CNF clauses relating
the Boolean variables allocated to that node, to the Boolean
variables allocated to the node’s children. Intuitively, the
clauses are true iff the U value represented by the nodes’s
Boolean variables equals the result of applying the node’s
node function to the sequence of U values represented by
the Boolean variables allocated to the node’s children. The
clauses output from translating an AST node depend only
on the node function which the node computes of its chil-
dren, and on the Boolean variables allocated to the node and
the children.

For each node function fi, we define a corresponding
“CNF translation” function

f̂i : BV ∗, BV ∗∗ → P Clause

f̂i takes a sequence of boolean variables from the domain
BV , corresponding to the result of the function, and a se-
quence of sequences of boolean variables corresponding to
the arguments, and returns a set of clauses that encode the
function in CNF. The correctness of this function is justi-
fied with respect to the encoding function and the seman-
tics of fi itself; its result evaluates to true iff the Boolean
variables allocated to the result of fi encode the value com-
puted by applying fi to the argument values encoded by the
Boolean variables allocated to the arguments.

Using these individual translation functions, we can now
translate the tree. The function transl : T → P Clause
translates one AST node to CNF, and is defined as

transl(t) ≡ let t = Tree(f, ch) | f̂(bv(t), map(bv, ch))

The CNF translation of an entire AST is then just the
union of translations of its nodes:

translT ree(t) = ∪n∈nodes(t)transl(n)

Correct translation to CNF requires that for each node t,
for any Boolean assignment ba : BV → Bool satisfying
transl(t), we have

f(map(dec, map(λ cv . map(ba, cv), map(bv, ch))))
= dec(map(ba, bv(t)))

where the node t computes the node function f of its chil-
dren ch. To test satisfiability, we constrain the Boolean vari-
able(s) allocated to the root to represent the value true from
U , by adding the appropriate unit clauses.

3.3. Mapping Back

Suppose now that the CNF C translated from our AST
is unsatisfiable, and the SAT solver identifies an unsatisfi-
able core C′ ⊆ C. We define a predicate irrel : T → Bool
on AST nodes, which is true for nodes whose translations
contributed no clauses to the unsatisfiable core:

irrel(t) ≡ {t | transl(t) ∩ C′ = ∅}

Claim: For any node n for which irrel(n) holds, we can
replace the node function fi with an arbitrary node func-
tion fj without making the AST satisfiable. To show this,
we argue that the CNF translation of the mutated AST will
still include the unsatisfiable core.
Proof: The function bv, which allocates Boolean variables
to AST nodes, does not depend on node functions; the se-
quence of Boolean variables allocated to a given AST node
depends only on the overall structure of the AST and the po-
sition of the node within the AST. Therefore, the same se-
quences of Boolean variables are allocated to all AST nodes
in the mutated AST as in the original AST.

For any node whose node function has not changed,
transl will thus output the same clause set. Any node n
whose clause set contributed to the core will still have the
same node function, and transl will output the same clause
set for that node. Each clause of the unsatisfiable core is
thus present in the translation of the mutated AST, mean-
ing that the mutated AST is still unsatisfiable.

3.4. Complications

The description of the AST above was made rather ab-
stract to make it clear that although we have implemented
the scheme for Alloy, it could be applied straightforwardly
to any constraint language that can be reduced to SAT. The
description of the translation is likewise more abstract, be-
cause this allows it to accommodate more advanced transla-
tions. The Alloy Analyzer, for example, identifies opportu-
nities for sharing among subformulas [17], so that the AST
is in fact not a tree but a DAG. This can be modelled by hav-
ing the bv function allocate the same Boolean variables to

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

p
[b1 b2]

(b5)

(~b5 b4)V Λ
(~b5 b6)V

(~b5 b3)V Λ

(~b4 ~b1)V Λ
(~b4 ~b2)V

(~b3 b1 b2)VV

in
[b6]

some
[b3]

.

..
...

and
[b5]

(~b6 b7)V Λ
(~b6 b8)V Λ
... p

[b1 b2]

no
[b4]

root=true

Figure 2. Translation of AST to CNF, and mapping back of unsatisfiable core. The AST is for the
(trivially unsatisfiable) Alloy formula of the form “(some p) && (no p) && ...”. To each node, a se-
quence of Boolean variables (b1 through b6) is allocated to represent the node’s value. From each
inner node, translation produces a set of clauses relating the node’s Boolean variables to its chil-
drens’ Boolean variables. The highlighted clauses form an unsatisfiable core, which is mapped back
to the highlighted AST nodes.

different AST nodes. Similarly, like most tools that gener-
ate CNF, the analyzer uses auxiliary Boolean variables to
prevent CNF explosion; this can be modeled by having bv
allocate additional Boolean variables to each AST node.

4. Experience

To evaluate the technique, we performed a variety of ex-
periments and small studies. First, we examined our logs of
common mistakes made in modelling, and identified those
that would likely be detected by core extraction. Second, we
revisited some models that had suffered from overconstraint
during their construction, reinstated the overconstraints, and
ran the core extractor to see how it fared. We describe a case
in which it worked well, and some in which it did not. Third,
we ran the extractor on several models for which we had
no expectation of overconstraint; to our surprise, we found
some serious flaws.

4.1. Common Mistakes

In this section, we will describe some pitfalls that we
have observed (and had reported to us by users) to be com-
mon in Alloy modelling, and show how core extraction

helps to highlight them. Mistakes in the use of a formalism
are of course less interesting than true conceptual mistakes,
but their consequences can be just as painful (and just as
much of a deterrent for potential modelers). Arguably they
reflect flaws in the language design, but no language is per-
fect, and all include similar potentials for error.

Pitfall #1: assuming variables with different names have
distinct values

A quantifier may not bound its variables as intended. In
a model with signatures Person and Name, and a relation
name from Person to Name, one might write

all p, q : Person | p.name != q.name

to say that each person has a unique name. But this formula
is always false unless the set Person is empty, since it
cannot be satisfied when p = q. The extracted core would
likely include the property being checked4, a constraint re-
quiring non-emptiness of Person, and this quantified for-
mula. Writing instead

4 If the model is overconstrained and no instances are possible, then
even the property being checked may be omitted from the extracted
core. In such a case, there exists a core which does not contain the
property being checked, although there is no guarantee that that par-
ticular core will be extracted.

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

all p : Person, q : Person - p |
p.name != q.name

would result in a much larger core (suggesting that it is cor-
rect, or at least more sensible).

Pitfall #2: omitting a special case for the final state of a
trace

A similar blunder is sometimes made in trace-based
models in which the modeler constraints transitions be-
tween states. We often lift a constraint on state pairs to
a constraint on traces so that we can analyze traces using
bounded model checking. An example of such a lifting for-
mula is the following:

all s : State |
LegalTransition (s, s.next)

where LegalTransition is the formula for the transi-
tion relation, and next is a relation that maps a state to its
successor. This particular attempt is flawed, and will yield
an empty trace set. The set of states is finite; usually, we
bound it by the machine diameter, which we have computed
with the analyzer’s help. There is therefore a last state, for
which s.next will be the empty set, thus making any fact
about next states vaccuously false. This is a classic “fence-
post error”, and modelers are just as prone to making such
a mistake as are other programmers. The extracted core will
show that the body of the quantified formula is only rele-
vant for the last state, since the presence of that state alone
will make facts about s.next fail. This is a big red flag for
the user, who presumably expects most or all of the states
to be relevant. The correct formula is

all s : State - LastState |
LegalTransition(s, s.next)

Pitfall #3: Confusing the given constraints and their in-
tended concequences

Novice modellers often make the mistake of writing a
constraint explicitly that should instead be implied by the
other constraints of the system. Consider a leader-election
algorithm that should allow for at most one leader at any
given time. Using our paradigm for modelling traces of
algorithms, a beginner may write the following erroneous
declaration:

sig State {
leader : option Participant, ...

}

The option keyword by itself constrains leader to map
each State atom to at most one Participant. A cor-
rect declaration would use the set keyword instead, allow-
ing for any number of leader participants in a state and forc-
ing other constraints to enforce the property of at most one
leader. When checking the property, the core will make the
error in the declaration obvious; it will contain only the con-
straint generated because of the use of option.

4.2. Locating Known Overconstraints

We took flawed versions of two models known to suffer
from overconstraint an extracted their cores. These are ex-
acting tests, since they represent the hardest cases we know
of. There have been many simpler cases of overconstraint
that we did not record which core extraction would likely
isolate immediately, but still took hours to track down man-
ually.

Iolus The more successful case involved an analysis we
performed [19] of Iolus, a scheme for secure multicast-
ing [16]. In Iolus, nodes multicast messages to other nodes
within a group whose membership changes dynamically.
Scalability is achieved by partitioning groups into sub-
groups, arranged in a tree, each with its own Key Distri-
bution Server (KDS) maintaining a local encryption key
shared with members of the subgroup. When a member
joins or leaves a subgroup, its KDS generates a new local
key and distributes it to the updated list of subgroup mem-
bers. This was modelled by specifying that after a mem-
ber joins or leaves, there is a key shared by the new mem-
bers, and no others. By mistake, the model said the key was
shared by the members of the entire group – thus including
all nodes in contained subgroups. This severely restricted
the trace set, potentially masking errors.

We attempted to detect this overconstraint using our con-
straint core functionality. We first checked an assertion stat-
ing that no node can read messages sent to the group when
that node was not a group member, one of the correctness
properties of the system. There was no counterexample, and
unfortunately, the extracted core included most of the con-
straints in the model. This result can be explained as fol-
lows. The error in the model is only a partial overconstraint;
while the error excludes some legal traces of the system, it
still allows many traces violating the correctness property.
Therefore, it is not surprising that most of the other con-
straints in the system are still required to establish correct-
ness. Just because the core contains most of a model does
not, unfortunately, imply that the model is free of overcon-
straint.

One method of finding overconstraints in this situation is
to check correctness properties on a restricted set of traces,
where it is still expected that most constraints of the model
must be in the core. For the Iolus model, we attempted to
check the aformentioned correctness property on traces that
had at least three key distribution servers (constraining the
size of relations is a typical way to restrict the search space).
With this additional restriction, the core no longer included
the constraints defining the transitions of the system or the
formula stating the property, a clear indication of overcon-
straint.

Two observations should be noted. First, when an over-
constraint is more partial and subtle (as in this case), some

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

thinking by the user will be necessary to find its source,
even after the constraint core identifies its existence. This
issue is fundamental; when several formulas in a model to-
gether overconstrain the system, the core can help to iden-
tify them by eliminating irrelevant formulas from consid-
eration, but the reason why the remaining formulas contra-
dict each other may still not be obvious. Second, while this
process of checking assertions in restricted spaces to find
overconstraints lacks automation, it still has important ad-
vantages over the process of finding these overconstraints
manually (without core extraction). Previously, a user who
suspected an overconstraint in a model would search for
it by explicitly checking that classes of legal traces were
not ruled out by the system. Our new method of inspecting
cores over restricted sets of traces gives more useful infor-
mation; even if a class of traces is not entirely ruled out by
a model, the core may show that important constraints are
irrelevant for that class, showing where the overconstraint
lies.

Firewire A model of the widely studied Firewire ‘tree
identify’ protocol [9] suffered from a modelling blunder
that produced a nastily subtle overconstraint. The declar-
ative form of the model allowed it to include a topolog-
ical constraint (that the links between nodes form a con-
nected, acyclic graph), so that analysis would cover all pos-
sible topologies involving a given number of nodes. Most
model checking analyses, in contrast, hardwire a particu-
lar topology.

The model reified operations as entities, with the follow-
ing declarations:

sig Op {}
disj sig NodeOp

extends Op {node: Node}
disj sig LinkOp

extends Op {link: Link}
static part sig SendRequests,

Elect extends NodeOp {}
static part sig AddChild,

GetResponse, Resolve
extends LinkOp {}

Operations are classified into node and link operations, each
associated with a particular node or link respectively. A
fragment of the transition relation specification shows how
this is used:

fun Trans (s, s’: State, op: Op) {
...
op in Elect => {

s.mode[op.node] in Waiting
...
s’.mode[op.node] in Elected
}

Analysis of this model produced bewildering results. For
6 nodes, no trace without repeated states was found longer
than 4 states, suggesting a machine diameter of 4. But an
assertion that at least one node is always elected within that
bound was violated. Some subset of the traces was ruled out
by an overconstraint.

In retrospect, as always, the flaw was easy to see. The
modeller got confused about whether the atoms of the signa-
ture Op represented operation types or operation instances.
Thinking of them as types, he added the keyword static
in their declarations, limiting a set such as AddChild to a
single element. The confusing was exacerbated by the pres-
ence of a message type partitioned into requests and ac-
knowledgments, for which it was sufficient to have exactly
one message of each type (since it contained no other infor-
mation). But the operation carries with it its node or link.
The consequence therefore, was that each operation could
only be performed on a single node or link, and for most
topologies, this ruled out all but the shortest traces.

Core extraction did not give much useful information.
We trimmed the model down to smaller and smaller frag-
ments (not actually being aware of the location of the over-
constraint ourselves). Along the way, core extraction helped
with the pruning, but it did not pinpoint the problem. Find-
ing overconstraints of this sort is a challenge for future
work.

4.3. Blunders Discovered

Running our core extractor revealed flaws in two models
that we had believed not to be overconstrained. We explain
one of them here.

In a different version of the Firewire tree identify proto-
col, we had added a stuttering operation at the last minute,
but failed to adjust the scopes of the analyses. The declara-
tion of operations read:

sig Op {}
static part sig Init, AssignParent,

ReadReqOrAck, Elect, WriteReqOrAck,
ResolveContention, Stutter
extends Op {}

listing the 7 operation types. A command was specified as:

check AtMostOneElected for 6 Op, 2 Msg,
3 Node, 6 Link, 3 Queue, 9 State

incorrectly bounding the number of operation types by 6.
Since the declaration of operations can only be satisfied
with 7, there is a glaring overconstraint. Core extraction pin-
pointed it immediately, showing all to be irrelevant by the
declaration. While one could imagine language improve-
ments (eg. a built-in enumerated type construct) to elimi-
nate this specific example of overconstraint, it would be im-

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

possible for the analyzer to detect constraints on scopes in
general, so this type of overconstraint will always exist.

Careless errors, like those described in this section, will
occur in programs as readily as in models. Eliminating such
errors from models will not eliminate them from programs.
However, eliminating careless errors from models may en-
able discovery of subtler errors in models that would other-
wise have been missed. Finding the sublter errors in models
can help prevent such errors from occurring in programs.

4.4. Performance

For core extraction we have used a recent modification
of the Zchaff satisfiability solver that added core extraction
functionality [21]. We found that Zchaff’s performance sup-
ports interactive identification of overconstraints. The mod-
ified solver’s performance on unsatisfiable instances was
comparable to the performance of the original solver. We
have also done some experiments with the BerkMin solver
[7, 6]; preliminary experiments indicate that BerkMin’s per-
formance is similar to Zchaff’s.

An unsatisfiable core can be refined by iterating the
solver on the core, pruning away additional clauses irrel-
evant to unsatisfiability. Running 10-20 such iterations can
often reduce the core by about 30%. Since subsequent iter-
ations run on smaller CNF files, the overhead of iteration is
often insignificant, especially for severely overconstrained
models. However, in our preliminary experiments we have
found no significant benefit in additional iterations in terms
of what portion of the model was identified as relevant.

5. Related work

The problem of detecting when a property is vacuously
satisfied by a model has been addressed in the context of
temporal model checking [15, 1, 3, 20]. Given a tempo-
ral logic formula, these methods produce a “witness” for-
mula that is satisfied if and only if the original formula is
vacuously satisfied. Thus, vacuous satisfaction can be de-
tected with an additional model checking run. Several char-
acteristics of these methods prevent them from solving the
problem of overconstraint in declarative models. First, over-
constraint occurs most often in the definition of the model-
checked algorithm rather than in the specification of cor-
rectness properties. Published vacuity detection methods
may alert the user to the presense of an overconstraint (by
showing that the entire correctness property is irrelevant),
but cannot pinpoint the location of overconstraint within the
model. Second, these methods were described for tempo-
ral logic formulas, and either assume a particular form of
the formula [1] or require a separate model-checking run
to test for irrelevance of each subformula [20]. These limi-

tations preclude published vacuity detection methods from
being effective on our problem.

6. Conclusions

We have presented core extraction, a new analysis that
helps discover overconstraint in declarative models. Uti-
lizing the “unsatisfied core” functionality of recent SAT
solvers, our tool identifies the set of constraints in a model
relevant to preserving a given safety property; the exclu-
sion of seemingly relevant constraints from this set indicates
an overconstraint. Our experience has shown that core ex-
traction quickly identifies simple overconstraints that have
taken hours to identify previously or that lingered unnoticed
for months. Furthermore, we have had some success in ap-
plying core extraction to more subtle overconstraints, al-
though work remains to further simplify the debugging pro-
cess in this case. Core extraction addresses a key deficiency
in automatic analysis of declarative models, and may have
useful application to other analyses that rely on SAT, such
as planning and bounded model checking.

Acknowledgements

This work was supported by NSF ITR grant #0086154
and by a National Defense Science and Engineering Grad-
uate Fellowship.

References

[1] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient de-
tection of vacuity in temporal model checking. Formal Meth-
ods in System Design, 18(2):141–163, 2001.

[2] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu.
Symbolic model checking using sat procedures instead of
bdds. In Design Automation Conference, 1999.

[3] H. Chockler, O. Kupferman, and M. Y. Vardi. Coverage met-
rics for temporal logic model checking. Lecture Notes in
Computer Science, 2031:528–??, 2001.

[4] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri.
Nusmv: a new symbolic model verifier. In Proceeding of
International Conference on Computer-Aided Verification
(CAV’99), 1999.

[5] A. J. H. David L. Dill, Andreas J. Drexler and C. H. Yang.
Protocol verification as a hardware design aid. In IEEE In-
ternational Conference on Computer Design: VLSI in Com-
puters and Processors, pages 522–525, 1992.

[6] E. Goldberg and Y. Novikov. Berkmin: a fast and robust
SAT-solver. In Proceedings of Design, Automation, and Test
in Europe (DATE), March 2002.

[7] E. Goldberg and Y. Novikov. Verification of proofs of un-
satisfiability for cnf formulas. In Proceedings of Design,
Automation and Test in Europe (DATE2003), Munich, Ger-
many, March 2003.

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

[8] G. Holzmann. The model checker spin. IEEE Trans. on Soft-
ware Engineering, 23(5):279–295, 1997.

[9] IEEE. IEEE Standard for a High Performance Serial Bus,
Standard 1394-1995. IEEE, Aug 1996.

[10] D. Jackson. Automating first-order relational logic. In Pro-
ceedings ACM SIGSOFT Conference on Foundations of Soft-
ware Engineering, San Diego, November 2000.

[11] D. Jackson, I. Shlyakhter, and M. Sridharan. A micro-
modularity mechanism. In Proceedings of the ACM SIG-
SOFT Symposium on the Foundations of Software Engineer-
ing (FSE), September 2001.

[12] C. B. Jones. Systematic Software Development using VDM.
Prentice-Hall, Upper Saddle River, NJ 07458, USA, 1990.

[13] H. Kautz and B. Selman. Planning as satisfiability. In Pro-
ceedings of the Tenth European Conference on Artificial In-
telligence (ECAI’92), 1992.

[14] S. Khurshid and D. Jackson. Exploring the design of an in-
tentional naming scheme with an automatic constraint ana-
lyzer. In Proceedings of the 15th IEEE International Con-
ference on Automated Software Engineering (ASE), Septem-
ber 2000.

[15] O. Kupferman and M. Y. Vardi. Vacuity detection in tem-
poral model checking. In Conference on Correct Hardware
Design and Verification Methods, pages 82–96, 1999.

[16] S. Mittra. Iolus: A framework for scalable secure multicast-
ing. In Proceedings ACM SIGCOMM’97, pages 277 – 288,
Cannes, September 1997.

[17] I. Shlyakhter, M. Sridharan, R. Seater, and D. Jackson. Ex-
ploiting subformula sharing in automatic analysis of quanti-
fied formulas. http://ilya.cc/sharing.ps, May 2003.

[18] J. M. Spivey. The Z Notation: A Reference Manual, 2nd ed.
Prentice-Hall, 1992.

[19] M. Taghdiri. Lightweight modelling and automatic analy-
sis of multicast key management schemes. Master’s thesis,
Massachusetts Institute of Technology, 2002.

[20] M. Vardi, R. Armoni, L. Fix, A. Flaisher, O. Grumberg,
N. Piterman, and A. Tiemeyer. Enhanced vacuity detection
in linear temporal logic. In Proceeding of International Con-
ference on Computer-Aided Verification (CAV’03), 2003.

[21] L. Zhang and S. Malik. Validating sat solvers using an
independent resolution-based checker: Practical implemen-
tations and other applications. In Proceedings of Design,
Automation and Test in Europe (DATE2003), Munich, Ger-
many, March 2003.

Appendix: Declarative Modelling

Roughly speaking, there are two ways to model a tran-
sition system. In the operational idiom, transitions are ex-
pressed using assignment statements, either with the control
flow of a conventional imperative program (as in Promela,
the language of the Spin model checker [8]), or using a
variant of Dijkstra’s guarded commands (as in Murphi [5]
and SMV [4]). In the declarative idiom, transitions are ex-
pressed with constraints, either on whole executions, or,
more often, on individual steps. This idea is rooted in the

early work on program verification; the operation specifica-
tions of the declarative languages VDM, Larch and Z are
essentially the pre- and post-conditions of Hoare triples.

For readers unfamiliar with these idioms, it may help
to think of an operational specification as one that gives
a recipe for constructing new states from old ones, and a
declarative specification as one that gives a fact that can be
observed about the relationship between old and new states.
An operational modeller asks ‘how would I make X hap-
pen?’; a declarative modeller asks ‘how would I recognize
that X has happened?’.

The advantage of the operational idiom is its executabil-
ity. A simulation, either random or guided by inputs from
the user, can give useful feedback to a designer. In model
checking, the ability to generate a state’s successor in a
single computational step makes it possible to explore the
reachable state space by depth-first search (as in Spin). In
contrast, declarative models have been viewed as not ex-
ecutable, and less amenable to automatic analysis in gen-
eral, since even generating successors requires search. Re-
cently, however, we have developed an analysis based on
SAT that allows both simulation and systematic exploration
of declarative models [10]. A common form of analysis that
we perform is similar to bounded model checking [2]: the
SAT solver is used to find traces that violate specified prop-
erties. In fact, earlier symbolic methods could also handle
models with declarative elements. The earliest versions of
SMV, for example, provided a construct for expressing tran-
sitions implicitly. Its analysis, being symbolic, was not hin-
dered by the inability to generate successors of a state con-
structively.

The advantage of the declarative idiom is its express-
ibility. For some kinds of problem, especially the control-
intensive aspects of a system, the operational idiom can be
more natural and direct. But in many cases, especially for
software systems, the declarative idiom is more flexible,
more natural, and sometimes, surprisingly, more amenable
to analysis.

• Partial Descriptions. The declarative idiom better sup-
ports partial descriptions. Sometimes, only one operation
is of interest. In a study of a name server [14], for ex-
ample, only the lookup operation was modelled and ana-
lyzed, since the operations for storing and distributing name
records were straightforward. An explicit invariant on the
structure of the name database took the place of the opera-
tions that in an operational model would define the reach-
able states implicitly. Even if the lookup operation were not
written declaratively, the need to account for the invariant
in generating initial states makes the description essentially
declarative.

• Underspecification. The need to constrain a model’s
behaviour only loosely arises in many ways. It arises when

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

implementation issues are to be postponed or ignored; anal-
ysis of a cache protocol, for example, can establish its cor-
rectness irrespective of the eviction policy. It arises when
analyzing a family of systems: an analysis can check that
a collection of design or style rules implies certain desir-
able properties, and thus that any system built in confor-
mance with the rules will have those properties too. And it
arises when accounting for an unpredictable environment:
checking a railway signalling protocol, for example, for all
possible train motions. In these cases, a declarative descrip-
tion is often succinct and natural, where an operational id-
iom would, in contrast, require an explicit enumeration of
possibilities. Cache eviction, for example, might be speci-
fied by saying that the resulting cache, viewed as a set of
address/value pairs, is a subset of the original cache. The
motion of trains on a network might be specified by say-
ing that the new track segment occupied by a train is either
its old one, or one connected to it.

• Analyzing Specifications. Specifications can be used
not only as yardsticks of analysis, but also as subjects in
their own right. It is easy to make mistakes writing spec-
ifications, so it helps to analyze their properties directly:
to check that one follows from another, for example, or to
generate executions over which specifications differ. If the
model and specification are written in the same declarative
language, ‘masking’ is possible. If the model M fails to have
properties P and Q, we might want to know whether the
problems are correlated. By checking the conjunction of P
and M against Q, we can find out whether fixing M so that it
satisfies P would also fix M with respect to Q. A declarative
analyzer also helps refactoring; any fragment of a model or
specification can be compared to a candidate replacement
by conjecturing the equivalence of the two.

• Non-Operational Problems. Some problems are sim-
ply not operational in nature, and demand a logical rather
than a programmatic description. Alloy has been used, for
example, to check the soundness of a refinement rule: this
involved modelling state machines and their trace seman-
tics, and checking that the rule related only machines with
appropriately related semantics. Many subjects are well de-
scribed in a rule-based manner: ontology models, security
policies, and software architectural styles, for example.

• Topology Constraints. Sometimes one particular aspect
of a system has a declarative flavour. For example, many
distributed algorithms are designed to work only if the net-
work’s topology takes some form, such as a ring or tree. A
declarative model can be constructed that constrains the net-
work appropriately, but does not limit it to a single topology.
The analysis will then account for all executions over all ac-
ceptable topologies (for a network of some bounded size).
The Firewire example described in Section 4 exploits this.

• Avoiding Initialization. In some systems, normal oper-
ation is preceded by an initialization phase in which the sys-

tem is configured. An operational description of such a sys-
tem will suffer from traces that are made longer than nec-
essary by their initialization prefixes. A declarative descrip-
tion can bypass the initialization phase with an invariant that
captures its possible results, thus shortening the traces. The
result is not only simpler description, uncluttered by the de-
tails of initialization, but also more efficient analysis, since
a bounded model checking analysis can use a lower bound
on trace length and still reach all states.

The very mechanisms that give declarative modelling its
power – conjunction and negation – also bring a curse: the
risk of overconstraint. It is unfortunately easy to write a
model that has fewer behaviours than intended. A check of
a safety property may then pass only because the offending
behaviour has been accidentally ruled out (probably along
with many other behaviours).

The risk can be mitigated by working carefully. One can
exploit the ability to build and analyze a model incremen-
tally, adding as few (and as weak) constraints as possible
to establish the required safety properties. One can simulate
the model extensively, adding conditions to force execution
of interesting cases. And of course one can formulate and
check liveness properties, at least ruling out the most egre-
gious overconstraints, such as those that lead to deadlock.

None of these approaches, however, counter the risk of
overconstraint that is relevant to a particular safety prop-
erty. The worst overconstraints are not the ones that rule out
most behaviours, since they are usually easy to detect, but
the ones that rule out exactly those behaviours that would
violate the safety property. Since the purpose of checking a
safety property is precisely to find behaviours that violate it,
we are hardly likely to be able to formulate a liveness con-
straint to ensure that those behaviours are possible! And of
course a liveness check can itself be confounded by an over-
constraint that rules out those traces that would be coun-
terexamples to the liveness check itself. A property-specific
detection of overconstraint is thus required, and core extrac-
tion is exactly such an analysis.

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

