
Keyword Programming in Java

Greg Little and Robert C. Miller
MIT CSAIL

32 Vassar Street
Cambridge, MA 02139

{glittle,rcm}@mit.edu

ABSTRACT
Keyword programming is a novel technique for reducing the
need to remember details of programming language syntax
and APIs, by translating a small number of keywords pro-
vided by the user into a valid expression. Prior work has
demonstrated the feasibility and merit of this approach in
limited domains. This paper presents a new algorithm that
scales to the much larger domain of general-purpose Java
programming. We tested the algorithm by extracting key-
words from method calls in open source projects, and found
that it could accurately reconstruct over 90% of the origi-
nal expressions. We also conducted a study using keywords
generated by users, whose results suggest that users can ob-
tain correct Java code using keyword queries as accurately
as they can write the correct Java code themselves.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Techniques–
program editors, object-oriented programming

General Terms
Experimentation, Languages

Keywords
Java, Autocomplete, Code Assistants

1. INTRODUCTION
Software development is rapidly changing and steadily in-

creasing in complexity. Modern programmers must learn
and remember the details of many programming languages
and APIs in order to build and maintain today’s systems. A
simple web application may require the use of half a dozen
formal syntaxes – such as Java, Javascript, PHP, HTML,
CSS, XML, SQL – in addition to many different APIs in
each language. Learning, remembering, and using all these
technologies correctly is becoming a significant burden.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’07, November 5–9, 2007, Atlanta, Georgia, USA.
Copyright 2007 ACM 978-1-59593-882-4/07/0011 ...$5.00.

Figure 1: In keyword programming, the user types
some keywords, presses a completion command
(such as Ctrl-Space in Eclipse), and the keywords
are translated into a valid expression.

Our goal is to develop techniques that reduce the bur-
den of remembering the details of a particular language or
API. The technique proposed in this paper, keyword pro-
gramming, uses a few keywords provided by the user to
search for expressions that are possible given the context of
the code. The user interface takes the form of an advanced
code completion interface in an IDE. For instance, Figure 1
shows a user entering add line in a Java file, which the sys-
tem translates in-place to lines.add(in.readLine()). The
generated expression contains the user’s keywords add and
line, but also fills in many details, including the receiver
objects lines and in, the full method name readLine, and
the formal Java syntax for method invocation.

In this paper, we propose an algorithm for finding keyword
query completions quickly. This work builds on keyword
programming techniques in Chickenfoot [5] and Koala [4],
but scales the algorithms to the larger domain of Java.

This work is similar to Prospector [6] and XSnippet [9],
which suggest Java code given a return type and available
types. However, our system uses keywords to guide the
search, making it more expressive when type information
alone is not enough to infer the desired code.

Our key contributions are:

• An algorithm for translating keyword queries into Java
code efficiently.

• An evaluation of the algorithm on a corpus of open
source programs, using artificial inputs generated by

84

extracting keywords from existing method call expres-
sions. The algorithm is able to reconstruct over 90%
of the expressions correctly given only the keywords
(in random order). This suggests that punctuation
and ordering contribute relatively little information to
most Java method calls, so an automatic technique like
keyword programming can take care of these details
instead.

• An evaluation of the algorithm on human-generated
inputs. The algorithm translates the keyword queries
with the same accuracy as users writing correct Java
code without tool support (which is roughly 50% in
our study).

In the next section, we present a model, which is followed
by a problem statement. We then present the algorithm, and
the two evaluations. Then we discuss related work, future
work, and conclusions.

2. MODEL
We want to model the following scenario: a user is at

some location in their source code, and they have entered
a keyword query. The keywords are intended to produce
a valid expression in a programming language, using APIs
and program components that are accessible at that point
in the source code. In order to find the expression, we need
to model the context of the location in the source code. In
the case of Java, we need to model the available methods,
fields and local variables, and how they fit together using
Java’s type system. The resulting model defines the search
space.

Although this paper focuses on Java, our model is more
generic, and could be applied to many languages. We define
the model M as the triple (T , L, F), where T is a set of
types, L is a set of labels used for matching the keywords,
and F is a set of functions.

2.1 Type Set: T

Each type is represented by a unique name. For Java, we
get this from the fully qualified name for the type. Examples
include int and java.lang.Object.

We also define sub(t) to be the set of both direct and
indirect subtypes of t. This set includes t itself, and anything
assignment-compatible with t. We also include a universal
supertype >, such that sub(>) = T . This is used when
we want to place no restriction on the resulting type of an
expression.

2.2 Label Set: L

Each label is a sequence of keywords. We use labels to
represent method names, so that we can match them against
the keywords in a query.

To get the keywords from a method name, we break up
the name at capitalization boundaries. For instance, the
method name currentTimeMillis is represented with the
label (current, time, millis). Note that capitalization is ig-
nored when labels are matched against the user’s keywords.

2.3 Function Set: F

Functions are used to model each component in an expres-
sion that we want to match against the user’s keyword query.
In Java, these include methods, fields, and local variables.

We define a function as a tuple in T ×L×T × ...×T . The
first T is the return type, followed by the label, and all the
parameter types. As an example, the Java function:
String toString(int i, int radix) is modeled as
(java.lang.String, (to, string), int, int).

For convenience, we also define ret(f), label(f) and
params(f) to be the return type, label, and parameter types,
respectively, of a function f .

2.4 Function Tree
The purpose of defining types, labels and functions is to

model expressions that can be generated by a keyword query.
We model expressions as a function tree. Each node in the
tree is associated with a function from F , and obeys certain
type constraints.

In particular, a node is a tuple consisting of an element
from F followed by some number of child nodes. For a node
n, we define func(n) to be the function, and children(n) to
be the list of child nodes. We require that the number of
children in a node be equal to the number of parameter types
of the function, i.e., |children(n)| = |params(func(n))|. We
also require that the return types from the children fit into
the parameters, i.e.,
∀iret(func(children(n)i)) ∈ sub(params(func(n))i).

Note that in the end, the system renders the function tree
as a syntactically-correct and type-correct expression in the
underlying language.

2.5 Java Mapping
We now provide the particulars for mapping various Java

elements to T , L and F . Most of these mappings are nat-
ural and straightforward, and could be adapted to other
languages.

2.5.1 Classes
A class or interface c is modeled as a type in T , using

its fully qualified name (e.g. java.lang.String). Any class
that is assignment compatible with c is added to sub(c),
including any classes that extend or implement c.

The model includes all classes that are directly referenced
in the current source file, plus classes that can be obtained
from those classes by method calls or field references. Since
the function trees generated by our algorithm are bounded
by a maximum depth, the model does not include classes
that can only be obtained by a method call sequence longer
than that maximum.

2.5.2 Primitive Types
Because of automatic boxing and unboxing in Java 1.5,

we model primitive types like int, and char as being the
same as their object equivalents java.lang.Integer and
java.lang.Character.

2.5.3 Methods
Methods are modeled as functions that take their receiver

object as the first parameter. For instance, the method:
public Object get(int index) of Vector is modeled as:
(java.lang.Object, (get), java.util.Vector, int).

2.5.4 Fields
Fields become functions that return the type of the field,

and take their object as a parameter. For instance, the field
public int x of java.awt.Point is modeled as:
(int, (x), java.awt.Point).

85

2.5.5 Local Variables
Local variables are simply functions that return the type

of the variable and take no parameters, e.g., the local vari-
able int i inside a for-loop is modeled as (int, (i)).

2.5.6 Constructors
Constructors are modeled as functions that return the

type of object they construct. We use the keyword new
and the name of the class as the function label, e.g., the con-
structor for java.util.Vector that takes a primitive int as
a parameter is represented by:
(java.util.Vector, (new, vector), int).

2.5.7 Members
Member methods and fields of the class containing the

keyword query are associated with an additional function,
to support the Java syntax of accessing these members with
an assumed this token. The new function doesn’t require
the object as the first parameter. For instance, if we are
writing code inside java.awt.Point, we would create a func-
tion for the field x like this: (int, (x)). Note that we
can model the keyword this with the additional function
(java.awt.Point, (this)).

2.5.8 Statics
Static methods do not need a receiver object—it is op-

tional. To support the optional argument, we use two func-
tions. For instance static double sin(double a)

in java.lang.Math is modeled with both:
(double, (sin), java.lang.Math, double), and
(double, (math, sin), double).

Note that in the second case, math is included in the
function label. This is done since experienced Java pro-
grammers are used to including the type name when calling
static methods.

2.5.9 Generics
We support generics explicitly, i.e., we create a new type

in T for each instantiation of a generic class or method.
For instance, if the current source file contains a reference
to both Vector<String> and Vector<Integer>, then we in-
clude both of these types in T . We also include all the
methods for Vector<String> separately from the methods
for Vector<Integer>. For example, we include both of the
following the get methods:
(String, (get), Vector<String>, int), and
(Integer, (get), Vector<Integer>, int).

The motivation behind this approach is to keep the model
simple and programming-language-agnostic. In practice, it
does not explode the type system too much, since relatively
few different instantiations are visible at a time.

2.5.10 Other Mappings
We have experimented with additional mappings, although

we have not yet done a formal evaluation of them. These
include numeric and string literals, variable assignment, and
array indexing. We have also considered ways to model con-
trol flow. Implementing and evaluating these extensions is
future work.

3. PROBLEM
Now that we have a model of the domain, we can articulate

the problem that our algorithm must solve.

The input to the algorithm consists of a model M , and a
keyword query. We also supply a desired return type, which
we make as specific as possible given the source code around
the keyword query. If any type is possible, we supply > as
the desired return type.

The output is a valid function tree, or possibly more than
one. The root of the tree must be assignment-compatible
with the desired return type, and the tree should be a good
match for the keywords according to some metric.

Choosing a good similarity metric between a function tree
and a keyword query is the real challenge. We need a metric
that matches human intuition, as well as a metric that is
easy to evaluate algorithmically.

Our metric is based on the simple idea that each input
keyword is worth 1 point, and a function tree earns that
point if it “explains” the keyword by matching it with a
keyword in the label of one of the functions in the tree.
This scoring metric is described in more detail in the next
section.

4. ALGORITHM
The algorithm can be regarded as a dynamic program

where we fill out a table of the form func(t, i), which tells us
which function with return type t is at the root of a function
tree that provides the best match for the keywords, assuming
the function tree can be at most height i. The table also
records the score, the degree of match of this function tree
with the keywords.

Calculating func(t, 1) for all t ∈ T is relatively easy. We
only need to consider functions that take no parameters,
since our tree height is bounded by 1. For each such func-
tion f , we give it a score based on its match to the user’s
keywords, and we associate this score with ret(f). Then
for each t ∈ T , we update func(t, 1) with the best score
associated with any subtype of t.

Instead of a scalar value for the score, we use an expla-
nation vector. We will explain what this is before talking
about the next iteration of the dynamic program.

4.1 Explanation Vector
The idea of the explanation vector is to encode how well

we have explained the input keywords. If we have n key-
words k1, k2, ..., kn, then the explanation vector has n + 1
elements e0, e1, e2, ..., en. Each element ei represents how
well we have explained the keyword ki on a scale of 0 to
1; except e0, which represents explanatory power not as-
sociated with any particular keyword. When we add two
explanation vectors together, we ensure that the resulting
elements e1, e2, ..., en are capped at 1, since the most we can
explain a particular keyword is 1.

Explanation vectors are compared by summing each vec-
tor’s elements to produce a scalar score, and then comparing
those scores.

Before we do anything else, we calculate an explanation
vector expl(f) for each function f ∈ F . In the common
case, we set ei to 1 if label(f) contains ki. For instance, if
the input is:

is queue empty

and the function f is (boolean, (is, empty), List), then
expl(f) would be:

(e0, 1is, 0queue, 1empty)

86

Unmatched keywords are penalized by subtracting 0.01
from e0 for each word appearing in either the input or label(f),
but not both. In this case, e0 is −0.01, since the word queue
does not appear in label(f).

Now consider the input:

node parent remove node

where node is a local variable modeled with the function
(TreeNode, (node)). Since node appears twice in the input,
we distribute our explanation of the word node between
each occurrence:

(e0, 0.5node, 0parent, 0remove, 0.5node)

In general, we set ei = max(x
y
, 1), where x is the number of

times ki appears in label(f), and y is the number of times
ki appears in the input.

In this case we set e0 to −0.03, since there are three words
that appear in the input, but not in the function label (we
include one of the node keywords in this count, since it only
appears once in the label).

4.2 Next Iteration
In subsequent iterations of the dynamic program, the goal

is to compute func(t, i) for all t ∈ T , given the elements of
the table that have already been computed, i.e., func(t′, j)
for all t′ ∈ T and j < i. The basic idea is to consider each
function f , and calculate an explanation vector by summing
the explanation vector for f itself, plus the explanation vec-
tor for each parameter type p found in func(p, i− 1).

We can do this, but there is a problem. We no longer
know that we have the optimal explanation vector possible
for this function at this height; consider the following input:

add x y

and assume the model contains three functions:

(int, (add), int, int)
(int, (x))
(int, (y))

If we look in func(int, 1), we will see either (int, (x)), or
(int, (y)). Let’s assume it is (int, (x)). Now consider what
happens in the next iteration when we are processing the
function (int, (add), int, int). We take the explanation
vector (-0.02, 1add, 0x, 0y), and we add the explanation
vector found in func(int, 1), which is (-0.02, 0add, 1x, 0y).
This gives us (-0.04, 1add, 1x, 0y).

Now we want to add the explanation vector for the second
parameter, which is also type int. We look in func(int, 1)
and find (-0.02, 0add, 1x, 0y) again. When we add it, we
get (-0.06, 1add, 1x, 0y), since the keyword components are
capped at 1.

But what if we had found the explanation vector for (int,
(y))? Then we could have gotten (-0.06, 1add, 1x, 1y), which
is better.

To get around this problem, we store the top r func-
tions at each func(t, i), where r is an arbitrary constant.
In our experiments, we chose r = 3, except in the case of
func(java.lang.Object, i), where we keep the top 5 (since
many functions return this type).

Now when we are considering function f at height i, and
we are adding explanation vectors for the parameters, we
are greedy: we add the explanation vector that increases

procedure Extract Tree(t, h, e)
for each f ∈ func(t, i) where i ≤ h

do

/* create tuple for function tree node */
n ← (f)
en ← e + expl(f)
/* put most specific types first */
P ← Sort(params(f))
for each p ∈ P

do

np, ep ← Extract Tree(p, i− 1, en)
/* add np as a child of n */
n ← append(n, np)

if en > beste

then

{
beste ← en

bestn ← n
return (bestn, beste)

Figure 2: Pseudocode to extract a function tree.

our final vector the most, and then we move on to the next
parameter. Note that if our parameter type is p, we consider
all the explanation vectors in each func(p, j) where j < i.

4.3 Extraction
After we have run the dynamic program to some arbitrary

height h (in our case, h = 3), we need to extract a function
tree.

We use a greedy recursive algorithm (see Figure 2) which
takes the following parameters: a desired return type t, a
maximum height h, and an explanation vector e (represent-
ing what we have explained so far). The function returns a
new function tree, and an explanation vector. Note that we
sort the parameters such that the most specific types appear
first (t1 is more specific than t2 if |sub(t1)| < |sub(t2)|).

4.4 Running Time
Assume the user enters n keywords; in a preprocessing

step, we spend O(|F |n) time calculating the explanation
vector for each function against the keywords. Now if we
assume that every function takes p parameters, every type
has s subtypes, and every type is returned by f functions;
then it takes O(h(|F |phr + |T |sf)) time to fill out the ta-
ble. Extracting the best function tree requires an additional
O((hrp)h) time, assuming we know the return type; other-
wise it takes O(|T |(hrp)h) time.

In practice, the algorithm is able to generate function trees
in well under a second with thousands of functions in F ,
hundreds of types in T , and a dozen keywords. More detailed
information is provided in the evaluation that follows.

5. EVALUATIONS
We conducted two evaluations of the algorithm. The first

evaluation used artificially generated keyword queries from
open source Java projects. This evaluation gives a feel for
the accuracy of the algorithm, assuming the user provides
only keywords that are actually present in the desired ex-
pression. It also provides a sense for the speed of the al-
gorithm given models generated from contexts within real
Java projects.

87

Project Class Files LOC Test Sites
Azureus 2277 339628 82006

Buddi 128 27503 7807
CAROL 138 18343 2478
Dnsjava 123 17485 2900

Jakarta CC 41 10082 1806
jEdit 435 124667 25875

jMemorize 95 14771 2604
Jmol 281 88098 44478

JRuby 427 72030 19198
Radeox 179 10076 1304

RSSOwl 201 71097 23685
Sphinx 268 67338 13217

TV-Browser 760 119518 29255
Zimbra 1373 256472 76954

Table 1: Project Statistics

The second evaluation looks at the accuracy of the al-
gorithm on human generated inputs; these inputs were so-
licited from a web survey, where users were asked to enter
pseudocode or keywords to suggest a missing Java expres-
sion.

6. ARTIFICIAL CORPUS STUDY
We created a corpus of artificial keyword queries by find-

ing expressions in open source Java projects, and obfus-
cating them (removing punctuation and rearranging key-
words). We then passed these keywords to the algorithm,
and recorded whether it reconstructed the original expres-
sion.

6.1 Projects
We selected 14 projects from popular open source web

sites, including sourceforge.net, codehaus.org, and objectweb.-
org. Projects were selected based on popularity, and our
ability to compile them using Eclipse. Our projects in-
clude: Azureus, an implementation of the BitTorrent pro-
tocol; Buddi, a program to manage personal finances and
budgets; CAROL, a library for abstracting away different
RMI (Remote Method Invocation) implementations; Dns-
java, a Java implementation of the DNS protocol; Jakarta
Commons Codec, an implementation of common encoders
and decoders; jEdit, a configurable text editor for program-
mers; jMemorize, a tool involving simulated flashcards to
help memorize facts; Jmol, a tool for viewing chemical struc-
tures in 3D; JRuby, an implementation of the Ruby program-
ming language in Java; Radeox, an API for rendering wiki
markup; RSSOwl, a newsreader supporting RSS; Sphinx, a
speech recognition system; TV-Browser, an extensible TV-
guide program; and Zimbra, a set of tools involving instant
messaging.

Table 1 shows how many class files and non-blank lines of
code each project contains. We also report the number of
possible test sites, which we discuss in the next section.

6.2 Tests
Each test is conducted on a method call, variable refer-

ence or constructor call. We only consider expressions of
height 3 or less, and we make sure that they involve only
the Java constructs supported by our model. For example,
these include local variables and static fields, but do not in-

Figure 3: Example Test Site

clude literals or casts. We also exclude expressions inside of
inner classes since it simplifies our automated testing frame-
work. Finally, we discard test sites with only one keyword
as trivial.

Figure 3 shows a valid test site highlighted in the JRuby
project. This example has height 2, because the call to
getRuntime() is nested within the call to newSymbol(). Note
that we count nested expressions as valid test sites as well,
e.g., getRuntime() in this example would be counted as an
additional test site.

To perform each test, we obfuscate the expression by re-
moving punctuation, splitting camel-case identifiers, and re-
arranging keywords. We then treat this obfuscated code as
a keyword query, which we pass to the algorithm, along with
a model of the context for the expression. If we can algorith-
mically infer the return type of the expression based solely
on context, then we give the algorithm this information as
well.

For example, the method call highlighted in Figure 3 is
obfuscated to the following keyword query: name runtime
get symbol symbol ruby new

The testing framework observes the location of this com-
mand in an assignment statement to newArgs[0]. From this,
it detects the required return type:
org.jruby.runtime.builtin.IRubyObject

The framework then passes the keyword query and this
return type to the algorithm. In this example, the algorithm
returns the Java code:
RubySymbol.newSymbol(getRuntime(), name)

We compare this string with the original source code (ig-
noring whitespace), and since it matches exactly, we record
the test as a success. We also include other information
about the test, including:

• # Keywords: the number of keywords in the key-
word query.

• time: how many seconds the algorithm spent search-
ing for a function tree. This does not include the time
taken to construct the model. The test framework was
implemented as a plug-in for Eclipse 3.2 with Java 1.6,
and ran on an AMD Athlon X2 (Dual Core) 4200+
with 1.5GB RAM. The algorithm implementation was
single threaded.

• |T |: the number of types in the model constructed at
this test site.

• |F |: the number of functions in the model constructed
at this test site.

88

Keywords Samples
2 3330
3 1997
4 1045
5 634
6 397
7 206
8 167
9 86

10 54
11 38

≥ 12 46

Table 2: Samples given # Keywords

Figure 4: Accuracy given # keywords. Error bars
show standard error.

6.3 Results
The results presented here were obtained by randomly

sampling 500 test sites from each project (except Zimbra,
which is really composed of 3 projects, and we sampled 500
from each of them). This gives us 8000 test sites. For each
test site, we ran the algorithm once as described above.

Table 2 shows how many samples we have for different
keyword query lengths. Because we do not have many sam-
ples for large lengths, we group all the samples of length 12
or more when we plot graphs against keyword length.

Figure 4 shows the accuracy of the algorithm given a num-
ber of keywords. The overall accuracy is 91.2%, though this
is heavily weighted to inputs with fewer keywords, based on
our sample sizes.

Figure 5 shows how long the algorithm spent processing
inputs of various lengths. The average running time is under
500 milliseconds even for large inputs.

Another factor contributing to running time is the size of
T and F in the model. Table 6 shows the average size of
T and F for each project. The average size of F tends to
be much larger than T . Figure 7 shows running time as a
function of the size of F . We see that the algorithm takes a
little over 1 second when F contains 14000 functions.

We ran another experiment on the same corpus to measure
the performance of the algorithm when given fewer keywords
than were found in the actual expression, forcing it to in-
fer method calls or variable references without any keyword
hint. This experiment considered only test sites that were
nested expressions (i.e. the resulting function tree had at

Figure 5: Time given # keywords. Error bars show
standard error.

Figure 6: Average size of T and F for different
projects.

least two nodes), so that when only one keyword was pro-
vided, the algorithm would have to infer at least one function
to construct the tree.

Again, we randomly sampled 500 test sites from each
project. At each test site, we first ran the algorithm with
the empty string as input, testing what the algorithm would
produce given only the desired return type. Next, we chose
the most unique keyword in the expression (according to the
frequency counts in L), and ran the algorithm on this. We
kept adding the next most unique keyword from the expres-
sion to the input, until all keywords had been added. The
left side of Figure 8 shows the number of keywords we pro-
vided as input. The table shows the accuracy for different
expression lengths (measured in keywords).

6.4 Discussion
Our goal in running these tests was to determine whether

keyword programming could be done in Java, or if the search
space was simply too big. The results suggest that the prob-
lem is tractable: a simple algorithm can achieve a modest
speed and accuracy.

The speed is reasonable for an Eclipse autocomplete-style
plug-in; most queries are resolved in less than 500 millisec-
onds. Note that we didn’t include the time it takes to build
the model in these measurements, since the model can be

89

Figure 7: Time given size of F . Error bars show
standard error.

Figure 8: Accuracy of inference (1 is 100%)

constructed in the background, before the user submits a
query. Constructing the model from scratch can take a sec-
ond or more, but a clever plug-in can do better by updating
the model as the user writes new code.

The accuracy on artificial inputs is encouraging enough to
try the algorithm on user generated queries. We also explore
possible improvements to the algorithm in the discussion for
the user study below.

7. USER STUDY
The purpose of this study was to test the robustness of

the algorithm on human generated inputs. Inputs were col-
lected using a web based survey targeted at experienced Java
programmers.

7.0.1 Participants
Subjects were solicited from a public mailing list at a col-

lege campus, as well as a mailing list directed at the com-
puter science department of the same college. Participants
were told that they would be entered into a drawing for $25,
and one participant was awarded $25.

A total of 69 people participated in the study; however,
users who didn’t answer all the questions, or who provided
garbage answers, like ”dghdfghdf...”, were removed from the
data. This left 49 participants. Amongst these, the aver-
age age was 28.4, with a standard deviation of 11.3. The
youngest user was 18, and the oldest user was 74. The vast
majority of participants were male; only 3 were female, and 1
user declined to provide a gender. Also, 35 of the users were
undergraduate or graduate students, including 2 postdocs.

All of these users had been programming in Java for at
least 2 years, except 2 people: one person had written a Java

Figure 9: Example of a task used in the user study
(task 5 from Table 3). This user is asked to enter
keywords that suggest the missing expression, but
other users may be asked to enter Java or pseu-
docode for this task.

program for a class, as well as for a job; the other person
had no Java experience at all, but had 20 years of general
programming experience.

7.1 Setup
The survey consisted of a series of web forms that users

could fill out from any web browser. Subjects were first
asked to fill out a form consisting of demographic informa-
tion, after which they were presented with a set of instruc-
tions, and a series of tasks.

7.1.1 Instructions
Each task repeated the instructions, as shown in Figure

9. Users were meant to associate the small icon next to
the text field with the large icon at the bottom of the page.
Next to the large icon were printed instructions. The in-
structions asked the user to infer what the program did at
the location of the text field in the code, and to write an
expression describing the proper behavior. The instructions
also prohibited users from looking online for answers.

Different icons represented different variants of the in-
structions. There were three variants: Java, pseudocode,
and keywords. The Java and pseudocode variants simply
asked the user to “write Java code” or “write pseudocode”
respectively. The keywords variant said “Write keywords
that suggest the proper code.” None of the instructions pro-
vided examples of what users should type, in order to obtain
naturalistic responses.

Each user saw two instruction variants: either Java and
pseudocode, or Java and keywords.

7.1.2 Tasks
The survey consisted of 15 tasks. Each task consisted of a

Java method with an expression missing, which the user had
to fill in using Java syntax, pseudocode, or a keyword query.
The 15 missing expressions are shown in Table 3. Figure 9
shows the context provided for task 5.

The same 15 tasks were used for each user, but the order of
the tasks was randomized. Five of the tasks requested Java
syntax, and these five tasks were grouped together either at
the beginning or the end of the experiment. The remaining
ten tasks requested either pseudocode or keywords.

7.1.3 Evaluation
Each user’s response to each task was recorded, along with

the instructions shown to the user for that task. Recall that
if a user omitted any response, or supplied a garbage answer

90

task desired expression
1 message.replaceAll(space, comma)
2 new Integer(input)
3 list.remove(list.length() - 1)
4 fruits.contains(food)
5 vowels.indexOf(c)
6 numberNames.put(key, value)
7 Math.abs(x)
8 tokens.add(st.nextToken())
9 message.charAt(i)
10 System.out.println(f.getName())
11 buf.append(s)
12 lines.add(in.readLine())
13 log.println(message)
14 input.toLowerCase()
15 new BufferedReader(new FileReader(filename))

Table 3: Missing Expressions for Tasks

Java pseudo keywords
response count 209 216 212
average keyword count 4.05 4.28 3.90
standard deviation 1.17 1.95 1.62
min/max keyword count 1—8 2—14 1—12
uses Java syntax 98% 73% 45%

Table 4: Response counts and statistics for each in-
struction type.

for any response, then we removed all the responses from
that user from the data.

Tasks 1 and 3 were also removed from the data. Task
1 was removed because it is inherently ambiguous without
taking word order into account. Task 3 was removed because
it requires a literal, which is not handled by our current
algorithm.

The remaining responses were provided as keyword queries
to the algorithm in the context of each task. The model sup-
plied to the algorithm was constructed from a Java source
file containing all 15 tasks as separate methods. The re-
sulting model had 2281 functions and 343 types, plus a few
functions to model the local variables in each task, so it is
comparable in complexity to the models used in the artificial
corpus study (Figure 6).

7.2 Results
Table 4 shows the number of responses for each instruction

type, along with various statistics. Note that responses are
said to use Java syntax if the response could compile as a
Java expression in some context.

When asked to write Java code, users wrote syntacti-
cally and semantically correct code 53% of the time. This
seems low, but users were asked not to use documenta-
tion, and most errors resulted from faulty memory of stan-
dard Java APIs. For instance, one user wrote vowels.-

find(c) instead of vowels.indexOf(c) for task 5, and an-
other user wrote Integer.abs(x) instead of Math.abs(x) for
task 7. Some errors resulted from faulty syntax, as in new

Integer.parseInt(input) for task 2. The number 53% is
used as a baseline benchmark for interpreting the results of
the algorithm, since it gives a feel for how well the users
understand the APIs used for the tasks.

Figure 10: Accuracy of the algorithm for each task,
and for each instruction type, along with stan-
dard error. The “Baseline” refers to Java responses
treated as Java, without running them through the
algorithm.

The algorithm translated 59% of the responses to seman-
tically correct Java code. Note that this statistic includes all
the responses, even the responses when the user was asked
to write Java code, since the user could enter syntactically
invalid Java code, which may be corrected by the algorithm.

In fact, the algorithm improved the accuracy of Java re-
sponses alone from the baseline 53% to 71%. The accu-
racies for translating pseudocode and keywords were both
53%, which is encouraging, since it suggests that users of
this algorithm can obtain the correct Java code by writing
pseudocode or keywords as accurately as they can write the
correct Java code themselves.

A breakdown of the accuracies for each task, and for each
instruction type, are shown in Figure 10.

Tables 5 and 6 show a random sample of responses for each
instruction variant that were translated correctly and incor-
rectly. The responses were quite varied, though it should
be noted that many responses for pseudocode and keywords
were written with Java style syntax.

7.3 Discussion
It is useful to look at some of the incorrectly translated

responses in order to get an idea for where the algorithm
fails, and how it could be improved.

7.3.1 A Priori Word Weights
The algorithm incorrectly translated print name of f

to Integer.valueOf(f.getName()). (The correct expres-
sion should have been System.out.println(f.getName()).)
Since the algorithm could not find an expression that ex-
plained all the keywords, it settled for explaining name, of,
and f, and leaving print unexplained. However, print is
clearly more important to explain than of.

One possible solution to this problem is to give a priori
weight to each word in an expression. This weight could
be inversely proportional to the frequency of each word in a
corpus. It may also be sufficient to give stop words like of,
the, and to less weight.

7.3.2 A Priori Function Weights
The response println f name in task 10 was translated to

System.err.println(f.getName()). A better translation
for this task would be System.out.println(f.getName()),
but the algorithm currently has no reason to choose System.-
out over System.err. One way to fix this would be to have a

91

instructions translated correctly task
Java Math.abs(x) 7

input.toInt() 2
tokens.add(st.nextToken()) 8

pseudocode letter at message[i] 9
System.out.println(f.name()) 10
input.parseInteger() 2

keywords vowels search c 5
lines.add(in.readLine()) 12
buf.append(s); 11

Table 5: Responses translated correctly

instructions translated incorrectly task
Java return(x>=0?x;-x); 7

tokens.append(st.nextToken()) 8
buf.add(s) 11

pseudocode (x < 0) ? -x : x 7
lines.append (in.getNext()); 12
input.lowercase(); 14

keywords Add s to buf 11
in readline insert to lines 12
print name of f 10

Table 6: Responses translated incorrectly

priori function weights. These weights could also be derived
from usage frequencies over a corpus.

Of course, these function weights would need to be care-
fully balanced against the cost of inferring a function. For
instance, the input print f.name in task 10 was trans-
lated to new PrintWriter(f.getName()), which explains all
the keywords, and doesn’t need to infer any functions. In
order for the algorithm to choose System.out.print(f.-

getName()), the cost of inferring System.out, plus the weight
of print as an explanation for the keyword print would need
to exceed the weight of new PrintWriter as an explanation
for print.

7.3.3 Spell Correction
Many users included lowercase in their response to task

14. Unfortunately, the algorithm does not see a token break
between lower and case, and so it does not match these to-
kens with the same words in the desired function toLower-

Case. One solution to this problem may be to provide spell
correction, similar to [5]. That is, a spell corrector would
contain toLowerCase as a word in its dictionary, and hope-
fully lowercase would be corrected to toLowerCase.

7.3.4 Synonyms
Another frequent problem involved users typing synonyms

for function names, rather than the actual function names.
For instance, many users entered append instead of add
for task 8, e.g., tokens.append(st.nextToken()). This is
not surprising for programmers who use a variety of different
languages and APIs, in which similar functions are described
by synonymous (but not identical) names.

An obvious thing to try would be adding append to the
label of the function add, or more generally, adding a list
of synonyms to the label of each function. To get a feel for
how well this would work, we ran an experiment in which
each function’s label was expanded with all possible syn-
onyms found in WordNet [1]. This improved some of the

translations, but at the same time introduced ambiguities in
other translations. Overall, the accuracy decreased slightly
from 59% to 58%. It may be more effective to create a cus-
tomized thesaurus for keyword programming, by mining the
documentation of programming languages and APIs for the
words that programmers actually use to talk about them,
but this remains future work.

8. RELATED WORK
This work builds on our earlier efforts to use keywords for

scripting – i.e., where each command in a script program is
represented by a set of keywords. This approach was used in
Chickenfoot [5] and Koala [4]. The algorithms used in those
systems were also capable of translating a sequence of key-
words into function calls over some API, but the APIs used
were very small, on the order of 20 functions. Koala’s al-
gorithm actually enumerates all the possible function trees,
and then matches them to the entire input sequence (as op-
posed to the method used in Chickenfoot, which tries to
build trees out of the input sequence). This naive approach
only works when the number of possible function trees is
extremely small (which was true for Chickenfoot and Koala,
because they operate on web pages). Compared to Chicken-
foot and Koala, the novel contribution of the current paper
is the application of this technique to Java, a general purpose
programming language with many more possible functions,
making the algorithmic problem more difficult.

This work is also related to work on searching for exam-
ples in a large corpus of existing code. This work can be
distinguished by the kind of query provided by the user.
For example, Prospector [6] takes two Java types as input,
and returns snippets of code that convert from one type to
the other. Prospector is most useful when the creation of a
particular type from another type is non-obvious (i.e. you
can’t simply pass it to the constructor, and other initializa-
tion steps may be involved). Another system, XSnippet [9],
retrieves snippets based on context, e.g., all the available
types from local variables. However, the query is still for a
snippet of code that achieves a given type, and the intent
is still for large systems where the creation of certain types
is nontrivial. A third approach, automatic method comple-
tion [2], uses a partially-implemented method body to search
for snippets of code that could complete that method body.

The key differences between our approach and these other
systems are:

1. The user’s input is not restricted to a type, although it
is constrained by types available in the local context.
Also, the output code may be arbitrary, not just code
to obtain an object of a certain type. For instance, you
could use a keyword query to enter code on a blank
line, where there is no restriction on the return type.

2. Our approach uses a guided search based on the key-
words provided by the user. These keywords can match
methods, variables and fields that may be used in the
expression.

3. Our approach generates new code, and does not re-
quire a corpus of existing code to mine for snippets.
In particular, users could benefit from our system in
very small projects that they are just starting.

There is also substantial work on searching for reusable
code in software repositories using various kinds of queries

92

provided by the user, including method and class signa-
tures [8, 13], specifications [3, 14], metadata attributes [7],
identifier usage [10], and documentation comments [11, 12].
These systems are aimed at the problem of identifying and
selecting components to reuse to solve a programming prob-
lem. Our system, on the other hand, is aimed at the coding
task itself, and seeks to streamline the generation of correct
code that uses already-selected components.

9. CONCLUSIONS AND FUTURE WORK
We have presented a novel technique for keyword program-

ming in Java, where the user provides a keyword query and
the system generates type-correct code that matches those
keywords. We presented a model for the space over which
the keyword search is done, and gave an efficient search algo-
rithm. Using example queries automatically generated from
a corpus of open-source software, we found that the type
constraints of Java ensure that a small number of keywords
is often sufficient to generate the correct method calls.

We also solicited keyword queries from users in a web
based survey, and found that the algorithm could translate
keyword queries with the same accuracy as users could write
unassisted Java code themselves. We also identified several
classes of errors made by the algorithm, and suggested pos-
sible improvements. These improvements are the primary
target of future work. We also plan to test the algorithm on
other general purpose languages.

Another important goal of future work is to get field data
on the usability of the algorithm. Toward this end, we have
already created an Eclipse Plug-in that uses the algorithm
to perform keyword query translations in the Java editor, as
shown in Figure 1.

The long-term goal for this work is to simplify the us-
ability barriers of programming, such as forming the correct
syntax and naming code elements precisely. Reducing these
barriers will allow novice programmers to learn more easily,
experts to transition between different languages and differ-
ent APIs more adroitly, and all programmers to write code
more productively.

10. ACKNOWLEDGMENTS
This work was supported in part by the National Sci-

ence Foundation under award number IIS-0447800, and by
Quanta Computer as part of the TParty project. Any opin-
ions, findings, conclusions or recommendations expressed in
this publication are those of the authors and do not neces-
sarily reflect the views of the sponsors.

11. REFERENCES
[1] Christiane Fellbaum, editor. WordNet: An Electronic

Lexical Database. Bradford Books, 1998.

[2] Rosco Hill and Joe Rideout. Automatic Method
Completion. Proceedings of Automated Software
Engineering (ASE 2004), pp. 228–235.

[3] J.-J. Jeng and B. H. C. Cheng. Specification Matching
for Software Reuse: A Foundation. In Proceedings of
the 1995 Symposium on Software reusability, pp.
97–105, 1995.

[4] Greg Little, Tessa A. Lau, Allen Cypher, James Lin,
Eben M. Haber, and Eser Kandogan. Koala: Capture,
Share, Automate, Personalize Business Processes on
the Web. Proceedings of CHI 2007, to appear.

[5] Greg Little, and Robert C. Miller. Translating
Keyword Commands into Executable Code.
Proceedings of User Interface Software & Technology
(UIST 2006), pp. 135–144.

[6] David Mandelin, Lin Xu, Rastislav Bodik, Doug
Kimelman. Jungloid Mining: Helping to Navigate the
API Jungle. Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and
implementation, pp. 48–61.

[7] R. Prieto-Diaz and P. Freeman. Classifying Software
for Reusability. IEEE Software, 4(1):6–16, 1987.

[8] M. Rittri. Retrieving library identifiers via equational
matching of types. Proceedings of the tenth
international conference on Automated deduction, pp.
603–617, 1990.

[9] Naiyana Sahavechaphan and Kajal Claypool.
XSnippet: Mining For Sample Code. Proceedings of
the 21st annual ACM SIGPLAN conference on
Object-oriented Programming Systems, Languages, and
Applications (OOPSLA 2006), pp. 413–430.

[10] N. Tansalarak and K. T. Claypool. Finding a Needle
in the Haystack: A Technique for Ranking Matches
between Components. In Proceedings of the 8th
International SIGSOFT Symposium on
Component-based Software Engineering (CBSE 2005):
Software Components at Work, May 2005.

[11] Y. Ye, G. Fischer, and B. Reeves. Integrating active
information delivery and reuse repository systems. In
International Symposium on Foundations of Software
Engineeringq, pp. 60–68, November 2000.

[12] Y. Ye and G. Fischer. Supporting reuse by delivering
task-relevant and personalized information. In
Proceedings of the 24th International Conference on
Software Engineering (ICSE-02), pp. 513–523, May
2002.

[13] A. M. Zaremski and J. M. Wing. Signature matching:
a tool for using software libraries. ACM Transactions
on Software Engineering and Methodology,
4(2):146–170, April 1995.

[14] A. M. Zaremski and J. M. Wing. Specification
matching of software components. ACM Transactions
on Software Engineering and Methodology,
6(4):333–369, October 1997.

93

