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Abstract

Test designers widely believe that the overall effective-
ness and cost of software testing depends largely on the
type and number of test cases executed on the software. In
this paper we show that the test oracle used during test-
ing also contributes significantly to test effectiveness and
cost. A test oracle is a mechanism that determines whether
a software executed correctly for a test case. We define a
test oracle to contain two essential parts: oracle informa-
tion that represents expected output, and an oracle proce-
dure that compares the oracle information with the actual
output. By varying the level of detail of oracle information
and changing the oracle procedure, a test designer can cre-
ate different types of test oracles. We design 11 types of test
oracles and empirically compare them on four software sys-
tems. We seed faults in each software to create 100 faulty
versions, execute 600 test cases on each version, for all 11
types of oracles. In all, we report results of 660,000 test
runs on each software. We show (1) the time and space re-
quirements of the oracles, (2) that faults are detected early
in the testing process when using detailed oracle informa-
tion and complex oracle procedures, although at a higher
cost per test case, and (3) that employing expensive oracles
results in detecting a large number of faults using relatively
smaller number of test cases.

Keywords: Test oracles, oracle procedure, oracle in-
formation, GUI testing, empirical studies

1 Introduction

Software testing is an important software engineering ac-
tivity widely used to find defects in programs. During the
testing process, test cases are executed on an application
under test (AUT) and test oracles are used to determine

whether the AUT executed as expected [1]. The test ora-
cle may either be automated or manual; in both cases, the
actual output is compared to a presumably correct expected
output.

Testers widely believe that the overall effectiveness of
the testing process depends largely on the number and type
of test cases used. Test adequacy criteria are used to com-
pare and evaluate the adequacy of test cases and generate
more if needed [18]. Our research has shown that the type
of test oracle used also has a significant impact on test ef-
fectiveness. There has been no reported work comparing
different types of oracles, their impact on fault detection
effectiveness and cost in terms of space and time. In this
paper, we describe several types of test oracles and empiri-
cally show their relative strengths, weaknesses, and costs.

We define a test oracle to contain two parts: oracle infor-
mation that is used as the expected output and an oracle pro-
cedure that compares the oracle information with the actual
output [14]. Different types of oracles may be obtained by
changing the oracle information and using different oracle
procedures. For example, for testing a spreadsheet, the fol-
lowing two types of oracle information may be used: (1) the
expected values of all the cells, and (2) the expected value of
a single cell. The choice of oracle information depends on
the goals of the specific testing process used. Similarly, the
oracle procedure for a spreadsheet may (a) check for equal-
ity between expected and actual cell values, or (b) deter-
mine whether a cell value falls within a specified expected
range. Combining the two oracle information types and two
procedure types yields four oracles: (1a) check for equality
between all expected and actual cells, (1b) check whether
all cell values fall within a specified expected range, (2a)
check for equality between a single expected and actual
cell values, and (2b) check whether a specific cell’s value
falls within a specified expected range. Note that the cost
of maintaining and computing different types of oracle in-
formation will differ as will the cost of implementing and
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executing different oracle procedures.
Several researchers have identified the need for different

types of oracles, although none have compared them em-
pirically. Notable is the work by Richardson in TAOS [13]
who proposes several levels of test oracle support, and Siep-
mann et al. in their TOBAC system [15] who provide seven
ways of implementing the oracle procedure.

In this paper, we define several types of oracle informa-
tion and procedures and empirically compare them. Our
previous work [9] laid the foundation for test oracles of a
class of event-based systems; specifically those that have a
Graphical User Interface (GUI) frontend. We now leverage
the technology to develop and study several types of test or-
acles. We feel that the GUI domain is ideal for this type
of study since the way we define a GUI oracle, in terms
of objects (widgets) and their properties that change over
time, allows us to “fine-tune” the oracle information and
procedure. We define four types of oracle information in
increasing level of detail and cost: widget, active window,
visible windows, and all windows. The oracle procedure
too has several increasing levels of complexity and cost:
“check for equality of widget, active window, visible win-
dow, all windows after each event” and “check all windows
after the last event” of the test case. (We provide details
and examples in Sections 3.1 and 3.2.) Combining the ora-
cle information and oracle procedures gives us 11 different
types of oracles. We empirically compare these test oracles
on four software systems. We seed faults in each software
to create 100 faulty versions, execute 600 test cases on each
version, for the 11 types of oracles. In all, we report results
of 660,000 test runs for each software.

The results of our experiments show that (1) oracles that
use detailed oracle information and complex procedures are
expensive both computationally and in terms of space, (2)
defects are detected early in the testing process when using
an expensive oracle, and (3) using expensive oracles allows
catching a large number of defects using relatively smaller
number of test cases.

The specific contributions of this work include:
1. a first empirical study comparing test oracles,
2. definition of different levels of GUI oracle informa-

tion,
3. development of different oracle procedures for GUIs,

and
4. guidelines to test designers about designing test ora-

cles, their relative strengths and weaknesses.

In the next section, we define GUI states and test cases.
In Section 3 we use these definitions to describe the parts
of a GUI test oracle, namely oracle information and oracle
procedure. We also describe how our general definition of
oracle information and procedure may be used to develop
different types of test oracles. In Section 4, we present de-
tails of experiments. Finally, we conclude with a discussion
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State = {(Label1, Align, alNone), (Label1, Caption, “Files of type:”), (Label1, 
Color, clBtnFace), (Label1, Font, (tfont)), (Form1, WState, wsNormal), (Form1, 
Width, 1088), (Form1, Scroll, TRUE), (Button1, Caption, Cancel), (Button1, 
Enabled, TRUE), (Button1, Visible, TRUE), (Button1, Height, 65), …}

(b)

(a)

Figure 1. (a) Open GUI, (b) its Partial State

of related work in Section 5 and future research opportuni-
ties in Section 6.

2 GUI Model

Before we develop the different types of GUI oracles, we
define the basic concepts needed to understand their design.
We begin by modeling a GUI state in terms of the widgets
(GUI’s basic building blocks) the GUI contains, their prop-
erties, and the values of the properties. We also define GUI
events (actions performed by the user) and use this defini-
tion to develop GUI test cases.

2.1 Widgets, Properties and Values

We model a GUI as a set of widgets W =
{w1, w2, ..., wl} (e.g., buttons, panels, text fields) that con-
stitute the GUI, a set of properties P = {p1, p2..., pm} (e.g.,
background color, size, font) of these widgets, and a set of
values V = {v1, v2..., vn} (e.g., red, bold, 16pt) associated
with the properties. Each GUI will contain certain types
of widgets with associated properties. At any point during
its execution, the GUI can be described in terms of the spe-
cific widgets that it currently contains and the values of their
properties.

For example, consider the Open GUI shown in Fig-
ure 1(a). This GUI contains several widgets, two of which
are explicitly labeled, namely Button1 and Label1; for
each, a small subset of properties is shown. Note that all
widget types have a designated set of properties and all
properties can take values from a designated set.

The set of widgets and their properties can be used to
create a model of the state of the GUI.
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Definition: The state of a GUI at a particular time t is the
set S of triples {(wi, pj , vk)}, where wi ∈ W , pj ∈ P ,
and vk ∈ V . �

A description of the complete state would contain infor-
mation about the types of all the widgets currently extant in
the GUI, as well as all of the properties and their values for
each of those widgets. The state of the Open GUI, partially
shown in Figure 1(b), contains all the properties of all the
widgets in Open.

In this research, we extensively use the definition of the
state of a GUI to develop the oracle information and proce-
dure. As will be seen later, we associate oracle information
with each test case. Hence, we formally define a GUI test
case next.

With each GUI is associated a distinguished set of states
called its valid initial state set:

Definition: A set of states SI is called the valid initial state
set for a particular GUI iff the GUI may be in any state
Si ∈ SI when it is first invoked. �

The state of a GUI is not static; events performed on the
GUI change its state. These states are called the reachable
states of the GUI. The events are modeled as functions from
one state to another.

Definition: The events E = {e1, e2, . . . , en} associated
with a GUI are functions from one state to another state
of the GUI. �

Events may be strung together into sequences. Of im-
portance to testers are sequences that are permitted by the
structure of the GUI [10]. We restrict our testing to such
legal event sequences, defined as follows:

Definition: A legal event sequence of a GUI is
e1; e2; e3; ...; en where ei+1 can be performed
immediately after ei. �

Our concepts of events, widgets, properties, and values
can be used to formally define a GUI test case:

Definition: A GUI test case T is a pair < S0, e1; e2; . . .;
en >, consisting of a state S0 ∈ SI , called the initial
state for T, and a legal event sequence e1; e2; . . . ; en.
�

Now that we have briefly defined the basic GUI concepts,
(the interested reader is referred to [8] for details and exam-
ples), we now describe a GUI test oracle.

3 GUI Test Oracle

In earlier work [9], we developed the design of a GUI
test oracle shown in Figure 2. We now briefly present the
design and extend it to develop different types of oracles.

Test Case

Oracle 
Information
Generator

Oracle
Procedure

Oracle Information

Execution
Monitor

Oracle

Actual
State

Run-time
information from

executing GUI

Verdict

Figure 2. An Overview of the GUI Oracle.

The oracle information generator automatically derives
the oracle information (expected state) using either a formal
specification of the GUI as described in our earlier work [9]
or by using a “correct” version of the software [16, 17] (as
described in Section 4). Likewise, the actual state (also de-
scribed by a set of widget, property, and value triples) is
obtained from an execution monitor. The execution moni-
tor may use any of the techniques described in [9], such as
screen scraping and/or querying to obtain the actual state
of the executing GUI. An oracle procedure then automati-
cally compares the two states and determines if the GUI is
executing as expected.

The above partitioning of functionality allows us to de-
fine a simple algorithm for test execution. Given a test case,
we execute all its events, compute the expected state, obtain
the GUI’s actual state, compare the two states, and deter-
mine if the actual is as expected. This algorithm is shown
in Figure 3. The algorithm ExecTestCase takes four
parameters: (1) a test case T (LINE 1) of the form < S0,
e1; e2; . . .; en >, where S0 is the state of the GUI before
the test case is executed, e1; e2; . . .; en is the event se-
quence; (2) a set of integers OPF (LINE 2) that determines
how frequently the oracle procedure is invoked (details in
Section 3.2); (3) COI (LINE 3) is a boolean constraint used
to obtain relevant triples for the oracle information. Exam-
ples of some constraints are shown in Section 3.1; (4) CAS

(LINE 4) is a similar boolean constraint but used by the or-
acle procedure to obtain relevant triples for both the actual
and expected state.

The algorithm traverses the test case’s events one by one
(LINE 5) and executes them on the GUI (LINE 6). The
oracle information OIi is obtained for the event ei (LINE 7).
The constraint COI is used to select a subset of the complete
state. This constraint is discussed in Section 3.1. Similarly,
the actual state ASi of the GUI, also constrained by a CAS

is obtained (LINE 8). The oracle procedure is then invoked
(LINE 9) that determines whether the software’s execution
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ALGORITHM :: ExecTestCase(
T: Test case; /* T = < S0, e1; e2; . . .; en > */ 1
OPF ⊆ {1, 2, 3, . . . , n}; /* oracle procedure freq. */ 2
COI : Boolean Constraint; /* on oracle information */ 3
CAS : Boolean Constraint; /* on actual state */){ 4

FOREACH ei in T DO { /* for all events */ 5
EXECUTE(ei); /* perform the event on the GUI */ 6

/* obtain the expected state for event ei */
OIi ← GETORACLEINFO(i, COI ); 7

/* extract the GUI’s actual state */
ASi ← GETACTUALSTATE(i, CAS ); 8

/* invoke the oracle procedure */
IF !(OP(ASi, OIi, CAS , OPF, i)) THEN { 9

RETURN(FAIL)}} /* test case fails */ 10
RETURN(PASS)} /* if no failure, report success */ 11

Figure 3. Test Execution Algorithm

was correct for the event.
Having outlined the high-level algorithm for the test case

executor, we now develop a formal model of oracle in-
formation and procedure and explain the roles of the con-
straints CAS and COI .

3.1 Test Oracle Information

Intuitively, the oracle information is a description of the
GUI’s expected state for a test case.

Definition: For a given test case T = < S0, e1; e2; . . .;
en >, the test oracle information is a sequence <
S1, S2, . . . , Sn >, such that Si is the (possibly par-
tial) expected state of the GUI immediately after event
ei has been executed on it. �

Recall from Section 2 that the GUI’s state is a set of
triples of the form (wi, pj , vk), where wi is a widget, pj

is a property of wi, and vk is a value for pj . Hence the or-
acle information for a test case is a sequence of these sets.
Note that we have deliberately defined oracle information
in very general terms, thus allowing us to create different
types of oracles for our study. The least descriptive oracle
information set may contain a single triple, describing one
value of a property of a single widget. The most descriptive
oracle information would contain values of all properties of
all the widgets, i.e., the GUI’s complete expected state. In
fact, all the subsets of the complete state may be viewed as a
spectrum of all possible oracle information types, with the

single triple set being the smallest and the complete state
being the largest. We use a boolean constraint (called COI

LINE 6 in Figure 3) to define the following four different
types of oracle information that we later use in our study.
For every triple that is included in the state description, the
constraint must evaluate to TRUE.
widget: the set of all triples for the single widget w asso-
ciated with the event ei being executed. The constraint is
written as (#1 == w), where #1 represents the first ele-
ment of the triple. Note that if applied to a triple with “w”
as its first element, the constraint would evaluate to TRUE;
in all other cases, it would evaluate to FALSE.
active window: the set of all triples for all widgets that are
a part of the currently active window W . The constraint is
written as (inWindow(#1, W )), where inWindow(a, b)
is a predicate that is TRUE if widget a is a part of window
b.
visible windows: the set of all triples for all widgets that are
part of the currently visible windows of the GUI. The con-
straint is written as (inWindow(#1, x) && isV isible(x)),
where isV isible(x) is TRUE if window x is visible and
FALSE otherwise. Note that visibility is a property of a
window, which can be set, for example, by invoking the
SetVisible() method in Java. Windows that are par-
tially or fully hidden by other overlapping windows are also
considered to be visible as long as this property is set.
all windows: the set of all triples for all widgets of all win-
dows. Note that the constraint for this set is simply TRUE
since this is the complete state of the GUI.

For brevity, we will use the terms LOI1 to LOI4 for the
above four levels of oracle information. In Figure 3, we
used the subroutine GETORACLEINFO(i, COI ) to compute
the oracle information. There are several different ways to
compute GETORACLEINFO. We now outline three of them:

1. Using capture/replay tools is the most commonly
used method to obtain the oracle information [7].
Capture/replay tools are semi-automated tools used to
record and store a tester’s manual interaction with the
GUI with the goal of replaying it with different data
and observing the software’s output. A detailed dis-
cussion of these tools is beyond the scope of this paper.
The key idea of using these tools is that testers manu-
ally select some widgets and some of their properties
that they are interested in storing during a capture ses-
sion. This partial state is used as oracle information
during replay. Any mismatches are reported as possi-
ble defects.

2. We have used formal specifications in earlier work
[9] to automatically derive oracle information. These
specifications are in the form of pre/postconditions for
each GUI event.

3. In our experiments presented in this paper, we have
used a third approach that we call execution extrac-
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tion. During this process, a test case is executed on
an existing, presumably correct version of the software
and its state is extracted and stored as oracle informa-
tion. We have employed platform-specific technology
such as Java API1, Windows API2, and MSAA3 to ob-
tain this information.

3.2 Oracle Procedure

The oracle procedure is the process used to compare the
oracle information with the executing GUI’s actual state.
It returns TRUE if the actual and expected match, FALSE
otherwise. Formally we define an oracle procedure as:

Definition: A test oracle procedure is a function F (OI,
AS, COI , CAS , Φ) −→ {TRUE, FALSE}, where OI is
the oracle information, AS is the actual state of the ex-
ecuting GUI, COI is a boolean constraint on OI, CAS

is a boolean constraint on AS, and Φ is a comparison
operator. F returns TRUE if OI and AS “match” as
defined by Φ; FALSE otherwise. �

The oracle procedure may be invoked as frequently as
once after every event of the test case or less frequently, e.g.,
after the last event. The algorithm for the oracle procedure
is shown in Figure 4. Note that our specific implementation
OP of F takes an extra parameter i that accounts for this
frequency. Also note that Φ is hard-coded to “set equal-
ity” (Line 7 of Figure 4). OP (as invoked from LINE 9 of
Figure 3) takes five parameters described earlier. The pro-
cess of comparing is straightforward: if the GUI needs to be
checked at the current index i of the test case (LINE 6), then
the oracle information is filtered using the constraint CAS

to allow for set equality comparison. The oracle procedure
returns TRUE if the actual state and oracle information sets
are equal.

We now use the definition of OP to develop five differ-
ent types of oracle procedures. Note that it is important to
specify the constraint CAS and the set OPF to completely
specify the oracle procedure.
LOP1: After each event of the test case, we compare the
set of all triples for the single widget w associated with that
event. The constraint CAS is written as (#1 == w) and
OPF = {1, 2, 3, . . . , n}. Note that CAS is first used to se-
lect relevant triples for the actual state (LINE 8 of Figure 3)
and then later to filter the oracle information (LINE 7 of
Figure 4).
LOP2: After each event of the test case, we compare the
set of all triples for all widgets that are a part of the cur-

1java.sun.com
2msdn.microsoft.com/library/default.asp?url=/library/en-

us/winprog/winprog/windows api reference.asp
3msdn.microsoft.com/library/default.asp?url=/library/en-

us/msaa/msaaccrf 87ja.asp

ALGORITHM :: OP(
ASi: Actual state; /* for event ei */ 1
OIi: Oracle information; /* for event ei */ 2
CAS : Boolean Constraint; /* on actual state */ 3
OPF ⊆ {1, 2, 3, . . . , n} /* oracle procedure freq. */ 4
i: event number; /* current event index 1 ≤ i ≤ n */ ) { 5

IF (i ∈ OPF) THEN /* compare? */ 6
RETURN(FILTER(OIi, CAS) == ASi) 7
ELSE RETURN(TRUE)} 8

Figure 4. Oracle Procedure Algorithm

rently active window W . The constraint CAS is written as
(inWindow(#1, W )) and OPF = {1, 2, 3, . . . , n}.

LOP3: After each event of the test case, we compare the
set of all triples for all widgets that are part of the currently
visible windows of the GUI. The constraint CAS is writ-
ten as (inWindow(#1, x) && isV isible(x)) and OPF =
{1, 2, 3, . . . , n}.

LOP4: After each event of the test case, we compare the set
of all triples for all widgets of all windows. The constraint
CAS is written as TRUE and OPF = {1, 2, 3, . . . , n}.

LOP5: After the last event of the test case, we compare
the set of all triples for all widgets of all windows. The
constraint CAS is written as TRUE and OPF = {n}.

Even though we define and use only five types of oracle
procedures, our definition of OP is very general and may be
used to develop a large variety of test oracle procedures.

3.3 Oracle Types

Using the four oracle information types (LOI1-LOI4)
and five oracle procedures (LOP1-LOP5) described in the
previous section, we define different types of test oracles.
The key idea of defining these multiple types of oracles
is that even though detailed oracle information (say LOI4,
i.e., “all windows”) may be available (perhaps computed
earlier), the tester may choose to save time and compare it
against a subset of the actual state, e.g., only “current wid-
get”. Hence, LOP1 (comparing against the current widget
only) can be used in the presence of all levels of oracle in-
formation (LOI1-LOI4). Similarly, LOP2 can be used for
LOI2-LOI4. Note that it does not make sense to talk about
comparing LOI1 with more actual state information than
the active widget; the additional information in the actual
state will be simply ignored. The combinations of oracle
information and procedure gives us 11 types of test oracles,
marked with an × in Table 1.
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LOP1 LOP2 LOP3 LOP4 LOP5
LOI1 ×
LOI2 × ×
LOI3 × × ×
LOI4 × × × × ×

Table 1. Types of Test Oracles

4 Experiments

Having presented the design of test oracles and our abil-
ity to create many types of oracles, we now present details
of an experiment using actual software and test cases to
compare the different oracle types. The following questions
need to be answered to show the relative strengths of the
test oracles and to explore the cost of using different types
of oracles.

1. What is the cost (in terms of time and space) incurred
in using different oracles?

2. Do different types of test oracles detect different num-
ber of faults for a given number of test cases?

3. Are faults detected early in the testing process when
using detailed oracle information and complex oracle
procedures?

To answer the questions we take different (assumed cor-
rect) software, artificially seed faults in them (borrowing
this technique from mutation testing), generate test cases
and multiple types of test oracles for each test case, and de-
tect the number of faults found by the test cases for each
oracle type, while measuring the following variables:

Number of Faults Detected: We record the total number
of faults detected by each oracle type, from the pool of
faulty programs.

Oracle Comparison Time (OCT): This is the time re-
quired to execute the oracle procedure.

Space: Each oracle type has different space requirements,
primarily because of the level of detail of the oracle
information. We measure the space required to store
different levels of oracle information.

4.1 Subject Applications

The subject applications for our experiments are part of
an open-source office suite developed at the Department of
Computer Science of the University of Maryland by un-
dergraduate students of the senior Software Engineering
course. It is called TerpOffice4 and consists of six applica-
tions out of which we use four – TerpWord, TerpPresent,

4www.cs.umd.edu/users/atif/TerpOffice

LOC Classes Windows

TerpWord 1,747 9 8

TerpPresent 4,769 4 5

TerpPaint 9,287 42 8

TerpSpreadSheet 9,964 25 6

TOTAL 25,767 80 27

Table 2. TerpOffice Applications

TerpPaint and TerpSpreadSheet. They have been imple-
mented using Java. Table 2 summarizes the characteristics
of these applications. Note that these applications are fairly
large with complex GUIs.

4.2 Fault Seeding

Fault seeding is used to introduce known faults into the
program under test. Artificially seeded faults should be sim-
ilar to faults that are naturally introduced into a program
due to mistakes made by developers. Offutt et al. have sug-
gested approaches for determining whether a fault is real-
istic [11]. Harrold et al. [5] have developed fault seeding
techniques using program dependence graphs.

We seeded faults in the TerpOffice applications to create
100 faulty versions for each application. Here we discuss
the issues faced while seeding faults in GUI applications.

We define a GUI fault as one that manifests itself on the
visible GUI at some point of time during the software’s ex-
ecution. We adopted an observation-based approach to seed
GUI faults, i.e., we observed “real” GUI faults in real ap-
plications. During the development of TerpOffice, a bug
tracking tool called Bugzilla5 was used by the developers
to report and track faults in TerpOffice version 1.0 while
they were working to extend its functionality and develop-
ing version 2.0. The reported faults are an excellent repre-
sentative of faults that are introduced by developers during
implementation. Table 3(a) shows an example of a fault re-
ported in our Bugzilla database and Table 3(b) shows the
(later) corrected segment of the same code. Table 3(c) and
3(d) show examples of faults seeded into this code.

We created 100 faulty versions for each software. Note
that exactly one fault was introduced in each version. This
model is useful to avoid fault-interaction, which can be a
thorny problem in these types of experiments and also sim-
plifies the computation of the variable “Number of Faults
Detected”; now we can simply count the faulty versions that
led to a test case failure, i.e., a mismatch between actual
state and oracle information.

5bugzilla.org
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Reported Fault in Bug Database Corrected Code

for( row = 0 ; row < 1024 ; ++row )
    for( col = 0 ; col < 26 ; ++col )

        display_cell( col, row );

for( row = 0 ; row < 1024 ; ++row )
    for( col = 0 ; col < 26 ; ++col )

        display_cell( row, col );

(a) (b)

Fault #1 Fault #2

for( row = 0 ; row < 26 ; ++row )
    for( col = 0 ; col < 26 ; ++col )

        display_cell( row, col );

for( row = 0 ; row < 1024 ; ++row )

    for( col = 0 ; row < 26 ; ++col )
        display_cell( row, col );

(c) (d)

Table 3. Seeding GUI Faults

4.3 Test cases

We used an automated tool (GUITAR6) to automatically
generate 600 test cases for each application. Note that GUI-
TAR employs previously developed structures (event-flow
graphs and integration trees [10]) to generate test cases. A
detailed discussion of the details of the algorithms used by
GUITAR is beyond the scope of this paper. The interested
reader is referred to [8] for additional details and analysis.

4.4 Oracle Information

We employed execution extraction (Section 3.1) to gen-
erate the oracle information. We used an automated tool
(also a part of GUITAR) that implements this technique.
The key idea to the technique employed by this tool is that
it automatically executes a given test case on a software and
captures its state (widgets, properties, and values) automat-
ically. By running this tool on the four subject applications
for all 600 test cases, we obtained the oracle information.
Note that the tool extracted all four levels of oracle infor-
mation. We measured the time and memory required for
this process.

4.5 Oracle Procedure and Test Executor

We implemented all five levels of oracle procedure. We
used “set equality” to compare the actual state with the ora-
cle information.

We executed all 600 test cases on all 100 versions of the
subject applications. When each application was being ex-
ecuted, we extracted its run-time state and compared it with
the stored oracle information. A mismatch was reported as
a fault. Note that we ignored widget positions during this
process since the windowing system launches the software
in a different screen location each time it is invoked.

6guitar.cs.umd.edu

Each test case required approximately 10 seconds to exe-
cute. This varied depended on the application and the num-
ber of GUI events in the test case. The total execution time
was approximately 600,000 seconds for each application.
The execution included launching the application under test,
replaying GUI events from a test case on it and analyzing
the resulting GUI states. The analysis consisted of record-
ing the actual GUI states of the faulty version and deter-
mining the result of the test case execution based on the 11
oracle types.

4.6 Threats to Validity

Threats to external validity are conditions that limit the
ability to generalize the results of our experiments to in-
dustrial practice. We have used four Java applications are
our subject programs. Although they have different types
of GUIs, this does not reflect a wide spectrum of possible
GUIs that are available today. All our subject programs
were developed in Java. Although our abstraction of the
GUI maintains uniformity between Java and Win32 appli-
cations, the results may vary for Win32 applications.

Threats to internal validity are conditions that can affect
the dependent variables of the experiment without the re-
searcher’s knowledge. We have used an observation-based
approach for seeding faults in the GUI applications. This
may have affected the detection of faults by the test cases.
Faults not exercised by any test case will go undetected.
We made an effort to make the faults as close as possible to
naturally occurring faults. Some of these faults might not
manifest themselves through the GUI.

Threats to construct validity arise when measurement in-
struments do not adequately capture the concepts they are
supposed to measure. For example, in this experiment one
of our measures of cost is time. Since GUI programs are
often multi-threaded, and interact with the windowing sys-
tem’s manager, our experience has shown that the execution
time varies from one run to another. One way to minimize
the effect of such variations is to run the experiments multi-
ple number of times and report average time.

The results of our experiments, presented next, should be
interpreted keeping in mind the above threats to validity.

4.7 Results

We now present some of the results of our experiments.
Due to lack of space, in many of these results, we are un-
able to present data for all 11 oracle types. Instead, when-
ever possible, we combine and report results of five impor-
tant data points: L1 (LOI1, LOP1), L2 (LOI2, LOP2), L3
(LOI3, LOP3), L4 (LOI4, LOP4), and L5 (LOI4, LOP5)
(see Table 1).
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Fault-detection ability: Result: complex oracles are
better at detecting faults than the simplest ones. Figure 5
shows the percentage of faults detected by the test cases
for different levels of oracles. The height of the columns
shows this percentage. The graph shows that there is an im-
provement in fault detection from L1 to L3 for almost all
applications. The cheapest oracle (L1) detects a very small
percentage of faults. However, there is no significant im-
provement from L3 to L4 and L5. The most expensive or-
acle does not provide significant improvement in detection
over an intermediate oracle.
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Figure 5. Number of Faults Detected

Test case length: Result: a greater percentage of shorter
test cases with complex oracle procedures are able to de-
tect faults than longer test cases with less complex oracle
procedures. In Figure 6, the x-axis represents the test case
length and y-axis shows the number of test cases that suc-
cessfully detected at least one fault (averaged for all four
subject programs). Note that there is a significant increase
in the fault detection ability of test cases when equipped
with more powerful test oracle procedures. Also note that
we did not present results for LOP5 since the comparison is
done only after the last event of the test case, in which case
the length of the test case is irrelevant.

Number of test cases: Result: a greater percentage of
test cases detect faults when using an expensive oracle. We
show this result using 3-D graphs (Figures 7 and 8). The x-
axis shows the number of detected faults, the y-axis shows
the number of test cases (averaged over the four subject pro-
grams) that detected the faults successfully, and the z-axis
shows the different oracles. From the graph, it is seen that
only 1100 test cases are able to detect even a single fault for
L1, whereas almost 2000 test cases are able to detect faults
for L2, L3, and L4. Note, however, that there is no signif-
icant difference between L3 and L4. Also, note that for L5
(see Figure 8 for better view), the number of test cases that
detect at least one fault is quite large.
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Figure 7. Number of Test Cases Detecting
Faults (view 1)

Time: Result: A complex oracle procedure is expensive
in terms of computation time. The actual time for execut-
ing the oracle procedure (OCT) is shown in Figure 9. A
more expensive oracle procedure takes longer time to ex-
ecute. This was true for all the four applications. This is
because a higher LOP validates a more detailed GUI state
than a cheaper one. An exception is LOP5, which executes
faster. This is because LOP5 validates only the final state of
the GUI.

Space requirements: Result: L3 and L4 show a sig-
nificant increase in storage requirements. In Figure 10
we compare the storage requirements of different oracles.
There is a large increase of storage requirement from L2 to
L3. This is because L3 and L4 capture a more complete GUI
state information that L1 and L2. These relatively expensive
oracle can be used to detect faults by executing shorter test
cases.

8

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03) 
1527-1366/03 $ 17.00 © 2003 IEEE 



1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

L1
L2

L3
L4

L5

0

200

400

600

800

1000

1200

1400

1600

1800

2000

N
um

be
r 

of
 T

es
t c

as
es

Number of Faults
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Faults (view 2)
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cedure

The above results show that oracle type L5, i.e., checking
for the complete GUI’s state after the last event of the test
case has been executed, is both cheap in terms of space and
time, and yet is able to yield results that are comparable
to the most expensive test oracles. With the exception of
L5, all complex oracles were more expensive both in terms
of time and space, but they were also more successful in
detecting faults.

5 Related Work

Very few techniques have been developed to automat-
ically generate the expected output for conventional soft-
ware. Hence, software systems rarely have an automated

0

50

100

150

200

250

TerpPresent TerpWord TerpSpreadSheet TerpPaint

Application Under Test

St
or

ag
e 

Si
ze

 (
M

B
)

L1

L2

L3

L4

L5

Figure 10. Oracle storage requirements

test oracle [12, 14, 13, 3]. In most cases, the expected be-
havior of the software is assumed to be provided by the
test designer. The expected behavior is specified by the
test designer in the form of a table of pairs (actual output,
expected output) [12], as temporal constraints that specify
conditions that must not be violated during software execu-
tion [13, 2, 3, 14], or as logical expressions to be satisfied by
the software [4]. This expected behavior is then used by the
verifier by either performing a table lookup [12], FSM cre-
ation [6, 3], or boolean formula evaluation [4] to determine
the correctness of the actual output.

Richardson in TAOS (Testing with Analysis and Oracle
Support) [13] proposes several levels of test oracle support.
One level of test oracle support is given by the Range-
checker which checks for ranges of values of variables
during test-case execution. A higher level of support is
given by the GIL and RTIL languages in which the test de-
signer specifies temporal properties of the software. Siep-
mann et al. in their TOBAC system [15] assume that the
expected output is specified by the test designer and pro-
vide seven ways of automatically comparing the expected
output to the software’s actual output. A popular alternative
to manually specifying the expected output is by perform-
ing reference testing [16, 17]. Actual outputs are recorded
the first time the software is executed. The recorded outputs
are later used as expected output for regression testing.

Automated GUI test oracles were developed in the
PATHS (Planning Assisted Tester for grapHical user inter-
face Systems) system [9, 8]. PATHS uses AI planning tech-
niques to automate testing for GUIs. The oracle described
in PATHS uses a formal model of a GUI to automatically
derive the oracle information for a given test case.

6 Conclusions

In this paper, we showed that test oracles play an im-
portant role in determining the effectiveness and cost of the
testing process. We defined two important parts of a test
oracle: oracle information that represents expected output,
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and an oracle procedure that compares the oracle informa-
tion with the actual output. By varying the level of detail of
oracle information and changing the oracle procedure, we
developed 11 types of test oracles. We empirically showed
that faults are detected early in the testing process when us-
ing detailed oracle information and complex oracle proce-
dures, although at a higher cost per test case. Moreover, em-
ploying expensive oracles catches a large number of faults
using relatively smaller number of test cases.

Our results provide valuable guidelines to testers. If
testers have short and a small number of test cases, they
can improve their testing process by using complex test or-
acles. On the other hand, if they have generated test cases
using an automated tool (e.g., GUITAR ), then they can use
cheaper and simpler test oracles to conserve resources.

Our results may be applicable to all event-based software
that can be modeled in terms of objects, properties, and their
values (e.g., object-oriented software). Test oracles for such
software would check for the correctness of (partial) states
of the objects.

In the future, we will extend our pool of subject applica-
tions to include non-Java and non-GUI programs. We will
also generate multiple types of test cases and observe the
effect of different test oracles on these test cases. Finally,
since we have identified differences in fault-detection abil-
ity of different test oracles, we will develop adequacy crite-
ria for test oracles in a way similar to those already available
for test cases [18].
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