
Specification and Synthesis of Hybrid Automata for Physics-Based Animation

Thomas Ellman

ellman@cs.vassar.edu

Department of Computer Science

Vassar College, Poughkeepsie, NY 12601

Abstract

Physics-based animation programs can often be modeled

in terms of hybrid automata. A hybrid automaton

includes both discrete and continuous dynamical

variables. The discrete variables define the automaton's

modes of behavior. The continuous variables are

governed by mode-dependent differential equations. This

paper describes a system for specifying and automatically

synthesizing physics-based animation programs based on

hybrid automata. The system presents a program

developer with a family of parameterized specification

schemata. Each scheme describes a pattern of behavior

as a hybrid automaton passes through a sequence of

modes. The developer specifies a program by selecting

one or more schemata and supplying application-specific

instantiation parameters for each of them. Each scheme

is associated with a set of axioms in a logic of hybrid

automata. The axioms serve to document the semantics of

the specification scheme. Each scheme is also associated

with a set of implementation rules. The rules synthesize

program components implementing the specification in a

general physics-based animation architecture. The

system allows animation programs to be developed and

tested in an incremental manner. The system itself can be

extended to incorporate additional schemata for

specifying new patterns of behavior, along with new sets

of axioms and implementation rules. It has been

implemented and tested on over a dozen examples. We

believe this research is a significant step toward a

specification and synthesis system that is flexible enough

to handle a wide variety of animation programs, yet

restricted enough to permit programs to be synthesized

automatically.

1. Introduction

Physics-based animation programs are useful in a variety

of contexts, including science, engineering, education and

entertainment. For example, in science, they are used to

investigate the behavior of dynamical systems. In

engineering, they are used to help design vehicles,

machinery and other mechanical devices. In education,

they are used to teach basic principles of physics. In

entertainment, they are used in games involving cars,

planes, spaceships and other moving objects. Such

programs are usually constructed by hand, in conventional

programming languages, such as C++, possibly augmented

with a physics-based animation toolkit. Unfortunately,

manual construction of physics-based animation programs

is expensive, time-consuming and highly prone to error.

A considerable portion of the difficulty results from the

need to track and manage instantaneous changes in the

states of objects and the equations and constraints that

govern their behavior. For example, when one rigid body

collides with another, the objects’ states of motion may

change instantaneously. If the contact persists for a period

of time, the governing equations of motion and

constraints may change as well. Similar instantaneous

changes occur when an autonomous agent switches from

one control mode to another. For example, when the

driver of a car depresses or releases the accelerator or

brake, the car’s acceleration may change instantaneously.

In previous work, the author and his students developed a

system for specification and synthesis of numerical

simulation programs for physics-based animation

applications. [Ellman et al, 2002], [Ellman et al, 2003].

The system allows a developer to specify the geometry,

shading, lighting and camera angles of a scene in 3D

Studio Max® and specify the dynamics of the scene in

Mathematica®. A Mathematica program processes these

specifications and generates a numerical C++ program that

interleaves simulation and rendering to generate a real-

time animation of the specified scene. This work drew

upon the field of analytical dynamics [Baruh, 1999], in

which motion is governed by differential equations

involving forces and constraints, for modeling physical

systems. The equations were assumed to remain fixed

over time, resulting in continuous and smooth motion,

ignoring the complexities described above.

We now report on research extending the system to

hybrid automata [Van Der Schaft and Schumacher, 2000]

A hybrid automaton includes both discrete and continuous

dynamical variables. The discrete variables define the

automaton's modes of behavior. The continuous variables

are governed by mode-dependent differential equations.

Hybrid automata are suited to modeling physical systems

with instantaneous changes in forces, constraints and

equations. They are also suited to modeling some types of

autonomous behavior by agents operating in a physics-

governed environment.

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

The long-term goal of this research is to develop a

specification language and synthesis system that is

general enough to handle a wide variety of animation

programs, yet restricted enough to permit programs to be

synthesized automatically. We are taking an incremental

approach in working toward this goal. We began by

developing a family of parameterized specification

schemata. Each scheme describes a pattern of behavior as

a hybrid automaton passes through a sequence of modes.

A developer can specify a program by selecting one or

more schemata and supplying application-specific

instantiation parameters for each of them. Each scheme

has a declarative interpretation, and can be combined with

other schemata in an order-independent fashion. We have

associated each scheme with a parameterized sentence in

a logic of hybrid systems. The sentence serves to

document the semantics of the specification scheme. We

have also developed sets of rewrite rules that implement

each of the specification schemata in a general physics-

based animation architecture. Finally, we have tested the

system on over a dozen examples. Our approach is

extendable. New specification schemata and synthesis

rules can be added as they are developed, without

impacting the semantics of existing schemata and the

functionality of existing synthesis techniques. We intend

to expand, generalize and unify the specification schemata

and synthesis techniques over time. We expect the

process will lead eventually to a logic-based specification

language and synthesis system with a combination of

expressiveness and automation that makes it useful for

developing animation programs in real-life applications.

2. Examples

Ball on Steps: A ball bounces and rolls down a gradually

inclined series of steps. The system has two modes of

operation: bouncing and rolling. In the bouncing mode

there are no constraints on the ball’s motion. In the rolling

mode, the ball is constrained to roll on a step without

skidding. The system begins in a bouncing mode. Each of

the first several times the ball strikes a step, it undergoes a

transition in which the bouncing mode is preserved and

the ball’s linear and angular velocities undergo

instantaneous changes as a result of the collision. The

velocities are updated according to equations expressing

conservation of linear and angular momentum and loss of

energy according to the Coulomb friction model. When

the ball’s kinetic energy at impact falls below a threshold,

it makes a transition from the bouncing mode to the

rolling mode. Eventually the ball rolls off the step and

undergoes a transition back into the bouncing mode as it

proceeds to bounce on the next step, repeating the cycle.

Robot on Track: A robot rides on a four-wheeled cart

moving around a circular track. The robot has one arm,

consisting of an upper arm, a forearm and a hand. A ball

sits on the track directly in the path of the robot. Each

time the robot encounters the ball, it stops, reaches out,

picks up the ball, and places it directly behind itself on the

track. It proceeds on its way around the track until it

encounters the ball again and repeats the cycle, over and

over, forever. The robot has ten modes of operation. It

cycles through these modes in a fixed order. In each

mode, the robot’s joints and axles are constrained to rotate

with fixed (possibly zero) angular velocities. The angular

velocity of each joint depends on the current mode.

Another mode-dependent constraint requires the ball to

translate and rotate along with the robot’s hand (while the

ball is in the hand) and to remain motionless relative to

the track (while the ball is on the track).

Dueling Spaceships: Two spaceships travel around a

planet in elliptical orbits according to Newton’s law of

gravitation. Each spaceship carries a torpedo inside it.

When one ship moves within its firing range of the other,

it launches its torpedo with a carefully chosen speed and

direction. The torpedo moves under the influence of

gravity along its own elliptical orbit until it collides with

the other spaceship. After the collision, the torpedo

returns instantly to its resting point inside its parent

spaceship, ready to be fired again. Each torpedo has two

modes of operation. In its rest mode, a torpedo is

constrained to move with the same velocity as its parent

spaceship. It its launched mode, a torpedo’s motion is

unconstrained, subject only to the force of gravity.

3. Hybrid Automata

A hybrid automaton consists of a finite set M of modes,

(parameterized by a set of nominal-valued mode

variables), a set S ⊆ RN of states (parameterized by a set

of real-valued state variables), a “flow” function

f:M×S×R→S; and a set P of transition operators

p=(g,rm,rs), in which g:M×S→{True,False} is a “guard”

and rm:M→M and rs:S→S are mode and state “reset”

functions.1

A behavior of a hybrid automaton is a path through M×S

governed by the flow function and the transition

operators. As long as automaton A resides in a given

mode, its behavior is described by the flow function. Thus

if A is in mode m and state s at time t, and it remains in

mode m for time ∆, it will be in state f(m,s,∆) at time t+∆.

A flow function is usually represented by a set of

differential equations. The transition operators describe

1The hybrid automaton model presented here is motivated

by the presentation in [Van Der Schaft and Schumacher,

2000]; however, some details are simplified or modified.

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

when and how the mode and state variables can change

instantaneously. If an automaton A is in mode m and state

s at time t, and for some transition operator p=(g,rm,rs),

g(m,s)=True, then A can make a transition to mode rm(m)

and state rs(s) at time t. Whenever one or more guards are

true, the automaton makes one of the allowed transitions.

Formally, a behavior β is a tuple (mβ, sβ, Tβ, Eβ, ≤β, Nβ)

where mβ:Tβ→Mβ; sβ:Tβ→Sβ, and the set Tβ is a time

evolution, constructed from the real numbers R by

removing a subset U of R and replacing each element t of

U with a set St={(t,1),…,(t,nt)}. This device allows the

path functions m and s to take multiple values at the

points in time at which transitions occur. The set Eβ of

event times is the union of St for all t∈U. The relation ≤β

is the smallest total ordering on Tβ that includes the

restriction of the usual ordering ≤ of R to R-U, and such

that for all t and u in R-U, and all integers i and j in [1..nt],

(t,i) ≤β (t,j) if i < j; u ≤β (t,i) if u < t; and (t,i) ≤β u if t < u.

The immediate successor relation Nβ on Tβ×Tβ is defined

in terms of ≤β so that Nβ(u,v) if and only if u=(t,i) and

v=(t,i+1) for some t in R-U and integer i in [1..nt-1]. If

Nβ(u,v) then we sometimes use the notation t for u and t

for v. The symbols and are mnemonics for the

relationship between an event time t and its (unique)

immediate successor t , when an immediate successor

exists. A time evolution in the neighborhood of a set Et of

event times in shown below.

The general scheme of a program for simulation of hybrid

automata is shown below. The procedure

Simulate(p,c,m,s,t1,t2,∆) takes the following inputs: the

program initialization parameters p, the state c of the

interactive user’s control device, and the mode m and

state s at time t1. It returns the updated mode and state at

time t2 using ∆ as its initial step size in a search for

transition points. It begins by integrating a mode-

dependent system derivative function from t to t+∆. Then

it applies each element of an array of Boolean-valued

guard functions to the resulting state. If any of the guards

return true, the program conducts a bisection search

between t and t+∆ to find an approximation of the earliest

time τ and state σ at which some guard Guard[i] became

true. Next it uses ModeResetFunction[i] and

StateResetFunction[i] to update the mode m and state σ

at time τ. In addition, the procedure repeatedly selects and

applies another pair of mode and state reset functions as

long as there exists a pair with a true guard. Finally, the

algorithm proceeds to continue the simulation from τ to t2

using the updated mode and state. The simulation

architecture can be instantiated in the context of a given

application problem by synthesizing the system derivative

function Derivative(p,c,m), guard predicates Guard[i],

and mode and state functions ModeResetFunction[i] and

StateResetFunction[i].

4. Specification

The system presents a human developer with a family of

schemata from which he/she can construct a specification

of a physics-based animation program. Each scheme

represents a pattern of behavior that occurs commonly in

physics-based animation programs. In particular, each

scheme describes a sequence of one or more transitions

through partially specified modes. The schemata have

parameters that allow a developer to instantiate them in

the context of an application problem. These parameters

describe conditions for activating the sequence, passing

through each mode in the sequence, and reinitializing the

mode and state at each transition point.2

2 We discuss only specifications of guards and mode and

state reset functions in this paper. Specifications of the

system derivative function are discussed in [Ellman et al,

2002] [Ellman et al, 2003].

Simulate(p,c,m,s,t1,t2,∆):

 If (t1≥t2) Then Return((m,s)).

 Else 1. Let r = Integral(Derivative(p,c,m),s,t1,t1+∆).

 2. If (∃ i ∈ [1..n]) Guard[i](p,c,m,r,t1+∆)

 Then a. Let (σ, τ , i) = Locate(p,c,m,s,t1,∆, r, i).

 b. Let (m’,s’) = Transition(i,p,c,m,σ,τ).

 c. Simulate(p,c,m’, s’, τ, t2, Min[t2-τ, ∆]).

 Else Simulate(p,c,m,r,t1+∆1,t2,Min[t2-(t1+∆), ∆]).

Locate(p,c,m,s,t,∆,r,i):

 If (∆ < ε) Then Return(r,t,i).

 Else a. Let q = Integral(Derivative(p,c,m),s,t,t+∆/2).

 b. If (∃ j ∈ [1..n]) Guard[j](p,c,m,q,t+∆/2)

 Then Locate(p,c,m,s,t,∆/2, q, j).

 Else Locate(p,c,m,q,t+∆/2,∆/2, r, i).

Transition(i,p,c,m,s,t):

 1. Let m’ = ModeResetFunction[i](p,c,m,s,t).

 2. Let s’ = StateResetFunction[i](p,c,m,s,t).

 3. If (∃ j ∈ [1..n]) Guard[j](p,c,m’,s’,t)

 Then Return(Transition(j,p,c,m’, s’, t’)).

Else Return((m’, s’)).

t ∈ U

(t,1) (t,nt)…

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

4.1 A Logic of Hybrid Automata

Each scheme is associated with one or more axioms. The

axioms serve to document the semantics of the scheme.

They are expressed in a timed hybrid linear temporal

logic. Sentences are constructed from primitive formulae;

Boolean operators; universal ∀ and existential ∃
quantification over the real numbers R; and the following

temporal operators: . (freeze), χ (next), (always),

(eventually) and U (until). A primitive formula

ϕ(m,s,t1,…,tk,u1,…,un) is an equation or inequality of

expressions over mode (m) and state (s) functions, time-

valued variables (t1,…,tk) and real-valued variables

(u1,…,un). If β=(mβ,sβ,Tβ,Eβ,≤β,Nβ) and t∈Tβ then

β tψ[ρ] means that behavior β satisfies formula ψ at time

t∈Tβ with assignments ρ:V→R∪Tβ to the universe V of

free variables, some of which may occur in ψ. The

expression ρ(v t) is the result of updating ρ with the

assignment v t. The expression β ψ means that behavior

β satisfies ψ. The expression A ψ means that hybrid

automaton A satisfies ψ. The satisfaction relations are

defined as follows:3

• β tϕ(m,s,t1,…,tk,u1,…,un)[ρ] if and only if

ϕ(mβ,sβ,ρ(t1),…,ρ(tk),ρ(u1),…,ρ(un)) is true in the

standard4 model of real arithmetic.

• β t(ϕ→ψ)[ρ], β t(ϕ∧ψ)[ρ], β t(ϕ∨ψ)[ρ] and

β t(¬ψ)[ρ] are defined as in classical logic.

• β t((∃u)ψ)[ρ] if and only if there exists some r∈R

such that β tψ[ρ(u r)].

• β t((∀u)ψ)[ρ] if and only if for all r∈R,

β tψ[ρ(u r)].

• β t(v . ψ)[ρ] if and only if β tψ[ρ(v t)].

• β t(χ ψ)[ρ] if and only if there exists some v∈Eβ

such that Nβ(t,v) and β vψ[ρ].

• β t(ψ)[ρ] if and only if there exists some v∈Tβ

such that v≥βt and β vψ[ρ].

• β t(ψ)[ρ] if and only if for all v∈Tβ such that v≥βt,

β vψ[ρ].

• β t(ϕ U ψ)[ρ] if and only if there exists u∈Tβ such

that u≥βt and β uψ[ρ] and for all v∈Tβ such that

t≤βv<βu, β vϕ[ρ], or else for all v∈Tβ such that t≤βv,

β vϕ[ρ].

• β ψ if and only if β tψ[ρ] for all ρ and t∈Tβ.

• A ψ if and only if β ψ for all behaviors β of A.

3 The logic presented here draws upon features of logics

discussed in [Alur and Henzinger, 1992] and [Davoren

and Nerode, 2000].
4 The standard model of real arithmetic must be extended

to include a binary time difference operation such that if

t1∈R and u=(t2,i)∈Tβ, then t1-u=t1-t2 and u-t1=t2-t1.

In the following sections, we define each specification

scheme in terms of the logic presented above, and provide

a brief paraphrase of its semantics. We also show how

each scheme can be used in specifying one of the example

animation scenarios introduced above.

4.2 Equational Reset Scheme

The EquationalReset scheme allows a developer to

specify a single transition operator. The developer

supplies a Boolean valued expression g over state

variables, mode variables and time, to specify the guard of

the transition operator. He/she also supplies a set e of

equations that relate the values of mode and state

variables before and after the transition, to specify the

operator’s mode and state reset functions.

EquationalReset(g, e):

(t . g(m,s,t) → χ (t . e(m, s, t , t)))

Paraphrase: If the guard g(m,s,t) is satisfied at time t ,

then the system undergoes a transition to a time t such

that N(t ,t) and equations e(m,s,t ,t) are satisfied

The EquationalReset scheme can be illustrated in terms of

the “Ball on Steps” example5. (See Appendix.) The ball

has two modes of operation, bouncing and rolling, and

three transitions: (1) Bouncing→Bouncing; (2)

Bouncing→Rolling; (3) Rolling→Bouncing. The

specification of the first transition is shown in the

Appendix. In this instance of the EquationalReset

5 Keywords of the specification language are shown in

boldface. The language includes terms for the linear and

angular positions and velocities of objects. (E.g.,

AbsTrans and AbsLV respectively refer to an object’s

absolute position and absolute linear velocity). The

language also includes predicates for asserting various

levels of continuity and smoothness in reset equations

(e.g., Continuity, PositionContinuity, VelocityContinuity),

as well as predicates for asserting that a transition must

enforce the position or velocity constraints that apply in

the new mode. (E.g.,PositionConstraintsInMode,

VelocityConstraintsInMode). The examples also use the

following Mathematica notation: The operator []

indicates function application. A vector is represented as

{x, y, z}. The x, y and z components of vector v are

v[[1]], v[[2]] and v[[3]]. A transformation rule Lhs->Rhs

describes how an expression matching Lhs is replaced

with the instantiation of Rhs. A pattern variable in Lhs

has an underscore at the end of its name. The expression

E /. R indicates the application of rule R to expression E.

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

scheme, the Guard asserts that the transition will occur

when the ball is bouncing on the first step; the ball is

moving downward; the lowest point of the ball is below

the height of the step; and the ball’s energy at impact is

above a threshold. The ResetEquations assert that after

the transition, the ball continues to bounce on the first

step, and the state variables are reset so that the ball

recoils from the collision losing a small amount of energy,

but conserving linear and angular momentum. The “Ball

on Steps” example includes three instances of the

EquationalReset scheme, corresponding to the three

transitions described above.

4.3 Specified Termination Scheme

The SpecifiedTermination scheme allows a developer to

specify two or more transition operators that take the

system through a sequence of partially specified modes.

The developer supplies a guard expression g and a set e of

reset equations to define a transition operator to initiate

the sequence. He/she also supplies an additional

termination condition c and set f of reset equations to end

each of the phases of the sequence. A termination

condition c or reset equation set f may involve the time,

mode and state values at present and earlier event times in

the sequence, and relationships among them. In the single

phase version of this scheme, the developer provides only

one (c,f) pair. In the multi-phase version he/she provides

one or more (c,f) pairs.

SpecifiedTermination(g, e, (c, f) +):

Paraphrase: If the guard g(m,s,v) is satisfied at time v

then the system undergoes a transition to a time v such

that N(v ,v) and equations e(m,s,v ,v) are satisfied. If

condition c(m,s,v ,v ,t) is true at t=v or some future time,

then at the earliest t ≥v satisfying c(m,s,v ,v ,t), the

system undergoes a second transition to a time t such that

N(t ,t) and equations f(m,s,v ,v ,t ,t) are satisfied.

The SpecifiedTermination scheme can be illustrated in

terms of the “Robot on Track” example. (See Appendix.)

This instance of the SpecifiedTermination scheme

describes one phase of the robot’s behavior. The Guard

tests that the robot is in the Drive mode (indicating the

robot is driving around the track) and the mode variable

Status[Clock] is Stopped (indicating that the robot has not

yet started driving). The InitializationEquations set

Status[Clock] to Running, and keep the robot in the Drive

mode. They preserve the positions of all the robot’s state

variables; however, they modify the velocities of the state

variables to accord with the velocity constraints that hold

in the Drive mode. The TerminationCondition asserts that

the robot remains in the Drive mode until it is close

enough to the ball to pick it up. The

FinalizationEquations put the robot in the Swing mode

(rotating its shoulder joint to move its arm toward the

ball), and stop the clock, thus preparing for the initiation

of transitions governing the Swing phase. The complete

specification of the robot uses ten single-phase

instantiations of the SpecifiedTermination scheme. The

clock status variable is used to ensure that each phase is

initiated only once per trip around the track. An

alternative “Robot on Track” specification uses a single

ten-phase instantiation of the SpecifiedTermination

scheme, and avoids the use of the clock status variable,

resulting in fewer transitions per cycle. Unfortunately,

this specification is too lengthy to include here.

4.4 Temporal Projection Scheme

The TemporalProjection scheme allows a developer to

specify a limited type of planned action by an autonomous

agent, as it passes through a sequence of behavior modes.

The developer supplies a guard expression g and a set e of

reset equations to define a transition operator to initiate

the sequence. In addition, he/she defines a vector u of

unknown control variables. Finally, the developer also

supplies a duration condition d, target condition k and

reset equation set f for each phase in the sequence. The

specification asserts that the control values will be chosen

to make each target condition true at the time specified by

the corresponding duration condition, i.e., at the end of

the corresponding phase. A duration condition d, target

condition k or reset equation set f may involve time, mode

and state values at present and earlier event times in the

sequence, and relationships among them. In the single

phase version of this scheme, the developer provides only

one (d,k,f) triple. In the multi-phase version he/she

provides one or more (d,k,f) triples.

TemporalProjection(g, u, e, (d, k , f) +):

Paraphrase: If the guard g(m,s,v) is satisfied at time v

then there exists vector u of values such that the system

undergoes a transition to a time v such that N(v ,v) and

equations e(u,m,s,v ,v) are satisfied Eventually the

system reaches a time t satisfying duration condition

(v . g(m,s,v) →
χ(v . e(m,s,v ,v) ∧

 ((t .¬c(m,s,v ,v ,t)) U (t . c(m,s,v ,v ,t) ∧
χ(t . f(m,s,v ,v ,t ,t))))))

(v . g(m,s,v) →
 (∃ u) χ(v . e(u,m,s,v ,v) ∧

 (t . d(u,m,s,v ,v ,t) ∧
 k(u,m,s,v ,v ,t) ∧

χ(t . f(u,m,s,v ,v ,t ,t)))))

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

d(u,m,s,v ,v ,t) and target condition k(u,m,s,v ,v ,t).

Finally, the system undergoes a transition to a time t such

that N(t ,t) and equations f(u,m,s,v ,v ,t ,t) are satisfied.

The TemporalProjection scheme can be illustrated in

terms of the “Dueling Spaceships” example. (See

Appendix.) Each torpedo has two modes of operation

(Rest and Launched) and two transitions (R→L and

L→R). These two pairs of transitions (one pair for each

torpedo) are specified by two instances of the

TemporalProjection scheme (one instance for each

torpedo). The scheme instance for Torpedo1 is shown in

the Appendix. The Guard is true when SpaceShip1 is

within its firing range of SpaceShip2, and Torpedo1 is in

its Rest mode. The UnknownValues (vX, vY, and vZ)

represent the velocity with which Torpedo1 will be

launched. The SeedEquations specify the initial values to

be used in an iterative numerical routine for determining

the UnknownValues. The InitializationEquations assert

that after the R→L transition, Torpedo1 will be in the

Launched mode; Torpedo2 will be in the same mode as

before the transition; the positions of all objects will be

unchanged; the velocities of SpaceShip1, SpaceShip2 and

Torpedo2 will be unchanged; and the velocity of

Torpedo1 will be (vX,vY,vZ). The DurationCondition

asserts that Torpedo1 takes a specified period of time to

reach its target. The TargetConditions assert that the

positions of Torpedo1 and SpaceShip2 will be the same at

the time the torpedo is supposed to reach its target. The

FinalizationEquations assert that after the L→R

transition, Torpedo1 will be in the Rest mode; Torpedo2

will be in the same mode as before the transition; the

positions and velocities of SpaceShip1, SpaceShip2 and

Torpedo2 will be unchanged; and the position and

velocity of Torpedo1 will be the same as the position and

velocity of TorpedoDock1, the point inside SpaceShip1 at

which it rests.

The TemporalProjection scheme supports a considerable

number of variations in the choice of UnknownValues,

and the way in which these values appear in other parts of

the instantiated specification scheme. In the “Dueling

Spaceships” example, the UnknownValues appear in the

InitializationEquations, but not in the duration condition.

Thus the duration of the Launched phase is known

statically. In an alternative formulation of this problem,

the unknown quantities are defined to include the

direction of the torpedo’s initial velocity and the duration

of its flight in the Launched phase, while the magnitude

of its initial velocity is known statically. In the multi-

phase version of the TemporalProjection scheme,

TargetConditions may be placed at the end of any of the

phases. In the resulting problem, phase durations or phase

initialization values must be chosen to achieve target

conditions at multiple points in time.

Parameters to the each of the specification schemata must

meet some conditions. Reset equations e(m,s,t ,t),

e(u,m,s,t ,t), f(m,s,v ,v ,t ,t) and f(u,m,s,v ,v ,t ,t) must

each be solvable for m(t) and s(t). Termination

condition c(m,s,v ,v ,t) must be composed of inequalities,

since exact numeric equalities cannot be reliably tested at

run time. Duration condition d(u,m,s,v ,v ,t) must be

solvable for t such that t ≥ v . Target condition

k(u,m,s,v ,v ,t) must be a conjunction of n equations,

where n is the length of the vector u of unknown values.

5. Synthesis

The program synthesis procedure is divided into three

stages. Each stage is implemented as a collection of

rewrite rules in the Mathematica programming language.

The first stage takes the program specification as input

and generates a functional program as output. The

functional program is expressed in a language with

operations for higher-order numerical procedures such as

integration and root extraction, as well as a variety of

array operations, among others. The language is in

Mathematica syntax and is not executable. It serves only

as an intermediate stage in the program synthesis process.

The functional program is constructed using a

combination of program scheme instantiation and

specialized rules for generating expressions solving

systems of linear and nonlinear algebraic equations. The

second stage takes the initial functional program as input

and generates an optimized functional program as output.

It uses a variety of program transformation rules to

decompose numerical program components and optimize

the flow of data to avoid unnecessary computation.

Finally, the third stage takes the optimized functional

program as input and generates a C++ program as output.

It defines C++ function object classes implementing

functional parameters to higher-order numerical

procedures, and generates additional ordinary C++

functions that implement the optimized functional

program. The underlying numerical routines are taken

from the Numerical Recipes library [Press, et al. 1986].

The synthesized C++ program fits into a program

architecture in which simulation is interleaved with

rendering to generate real-time animation.

Each specification scheme is associated with a set of

rewrite rules that synthesize the program components that

comprise its implementation. Each rule set performs the

following tasks: (1) Synthesize one or more transition

operators, each composed of a guard predicate, a mode

reset function and a state reset function; (2) Define any

new mode or state variables needed to support the

transition operators; (3) Define algebraic or differential

constraints that govern the evolution of newly defined

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

state variables. The implementation rules generate

programs that obey the Persistent Mode Convention [Van

Der Schaft and Schumacher, 2000]. They synthesize

transition rules that fire only when a transition is required

by the specification.6

EquationalReset: The rules implementing this

specification scheme generate only one transition

operator. The guard predicate is obtained from the

definitional expansion of the Guard parameter of the

scheme instance. The mode reset function is obtained by

symbolically solving the ResetEquations parameter to

obtain an expression for the new values of the mode

variables in terms of their old values. The state reset

function is likewise synthesized by generating an

expression for the new values of the state variables in

terms of their old values. In this case, the system uses a

set of rules for decomposing systems of equations into

components, solving each component symbolically when

possible, and otherwise generating expressions that solve

the component using an LU decomposition routine (for

linear equations) or a Newton-Raphson routine (for

nonlinear equations).

SpecifiedTermination: The rules implementing this

specification scheme generate N+1 transition operators,

where N is the number of phases in the instantiated

scheme. In some respects, the rules implementing this

scheme are similar to the rules implementing the

EquationalReset scheme described above. Each guard

predicate is obtained from the definitional expansion of a

Guard or TerminationCondition parameter of the scheme

instance. Likewise, each mode or state reset function

operates by symbolically or numerically solving equations

supplied in the InitializationEquations or

FinalizationEquations parameters. The process is

complicated by the fact that a termination condition or

finalization equation may refer to mode variables, state

variables and time values at earlier event times. The

referenced values are accessed in the following way:

Whenever a value at event time t is referenced by a

subsequent guard or reset equation, the value is stored in a

synthesized state variable by the state reset function that

fires at event time t. The value of the synthesized state

variable remains fixed as the system passes through the

sequence of phases, until the termination condition or

finalization equation obtains the needed value from the

state variable in which it was stored. Another

complication results from the way in which the scheme

semantics define a context in which transitions should

6 In order to instantiate the simulation program scheme,

we must also synthesize the system derivative function.

Our procedure for synthesizing the system derivative is

described in [Ellman et al, 2002] and [Ellman et al, 2003].

fire. A guard that terminates the first phase, or a

subsequent phase, should only fire when the

corresponding phase is running, and not in any other

context. This condition is enforced by rules synthesizing a

mode variable to represent the number of the currently

executing phase (if any) and arranging that each guard

check the synthesized mode variable for an appropriate

value before firing.

TemporalProjection: The rules implementing this

specification scheme also generate N+1 transition

operators, where N is the number of phases in the

instantiated scheme. The state reset function initializing

the first phase must determine UnknownValues that will

guarantee satisfaction of TargetConditions that apply at

the ends of one or more phases. It synthesizes a shooting

method for this purpose [Press, et al. 1986]. The shooting

method uses a Newton-Raphson routine to solve a set of

simultaneous nonlinear equations. The equations involve

expressions that repeatedly initialize each phase; use a

Runge-Kutta routine to integrate the system derivative to

the end of the phase; and evaluate the target conditions in

the resulting state. After computing the UnknownValues,

the state reset function uses them to initialize synthesized

state variables. These state variables carry the

UnknownValues forward in time to the points at which

they are used by state reset functions to initialize phases.

The duration of each phase is always determined in

advance by the first state reset function via the shooting

method. The phase durations are used to initialize

synthesized clock variables. The termination of each

phase is controlled by a guard predicate that references a

clock variable as well as a synthesized phase number

variable. In most other respects, the guard predicates and

mode and state reset functions for each phase are

implemented by rules that operate in a manner similar to

those implementing the EquationalReset and

SpecifiedTermination schemata described above.

Some of the rules implementing the first state reset

function, for a single-phase TemporalProjection scheme,

are shown in the Appendix. These rules instantiate a

program scheme for a shooting method. They refer to

primitives such as NonLinearSolution (implementing the

Newton-Raphson routine) and Integral (implementing the

Runge-Kutta routine). The expressions in bold face are

expanded by the synthesis rules. The expressions in

normal face appear in the synthesized functional program.

The implementation of the TemporalProjection scheme

depends on an assumption about the way the system

interacts with a user when the animation program is

running. Correctness of the implementation requires that

either the target conditions do not depend on user

controlled variables, or the state of the user’s input device

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

does not change between the time the system carries out

the temporal projection, and the time the target conditions

are all achieved.

One may reasonably ask under what conditions the

synthesized automation will satisfy its specification. We

address this issue informally as follows. To begin with,

suppose that automaton A is generated by the

implementation rules associated with a single instantiated

specification scheme S. Then it is not hard to see that

A S, as long as the code solving the reset equations, or

the temporal projection equations, is guaranteed to find a

solution. Now suppose that S=S1∧…∧Sn and that

automaton A is constructed by separately applying the

appropriate set of implementation rules to each Si and

forming the union of the synthesized transition operators.

Is it the case that A S ? The answer is “yes”, provided (1)

each Si is an instance of either the EquationalReset

scheme or the ConditionalTermination scheme; (2) all the

transition equations are linear and nonsingular (so their

unique solutions are found reliably); (3) the entire

specification is consistent. The EquationalReset and

ConditionalTermination schemata require only that

specified transitions fire under specified conditions. The

synthesized automaton fails to meet its specification only

if some operator fails to fire when its guard is true. This

can happen only if some other operator with a different

effect fires instead; however, if two synthesized operators

with different effects are simultaneously enabled, then the

specification is inconsistent. So A S if S is consistent.

Unfortunately, we have no such guarantee if S includes

instances of the TemporalProjection scheme. The

TemporalProjection scheme asserts that specified

transitions will occur, and that target conditions will hold

at a subsequent time. The mere firing of the synthesized

transitions does not guarantee satisfaction of the

specification. One can easily construct an example

S=S1∧S2 in which S1 is an instance of

TemporalProjection and S2 specifies a transition operator

that interferes with the implemented solution to the

temporal projection problem. For example, in the dueling

spaceships example, S2 might specify a transition operator

that implements a collision between a torpedo and an

asteroid and moves a launched torpedo off its projected

course. Furthermore, some other implementation of

TemporalProjection might avoid or correct the

interference. For example, the alternative implementation

of S1 might include yet another transition that immediately

puts the torpedo on a new course toward its target. In such

a case, we cannot blame the developer by saying the

specification is inconsistent. In order to guarantee

correctness under these circumstances, the rules

implementing TemporalProjection would have to

examine and take into account the entire specification.

This observation would seem to be at odds with the

incremental, modular approach we have taken in

developing parameterized specification schemata, and

associating each with its own set of implementation rules.

A developer would probably not intend for operators

synthesized from two different schemata to be

inconsistent or interfere with each other as described

above. This suggests a practical solution. The system

would separately synthesize an implementation of each

instantiated specification scheme, and afterward attempt

to verify consistency and absence of interference. For

example, the system could check consistency by

examining each pair of synthesized transition operators

and trying to determine if the two guards can be

simultaneously true, e.g., by linear programming for

guards composed from linear inequalities, or cylindrical

algebraic decomposition for guards containing

polynomial inequalities. Absence of interference with

temporal projection could be verified by doing a

dependency analysis of the system derivative function to

determine which state and mode variables influence the

target conditions. If the relevant variables are modified

only by transition operators implementing the temporal

projection instance, then the implementation is free from

interference. The verification process could result in three

different answers: “correct”, “incorrect” and “unknown”.

In the latter two cases, the appropriate remedial action

would depend on the context in which the application

program would be used.

In practice, there are many reasons why the synthesized

program might fail to meet expectations. The specification

might include nonlinear equations. Numerical solution of

these equations might fail to find a root when one exists,

or might find the wrong root. This is often a possibility

with the TemporalProjection scheme, since the projection

equations are usually nonlinear. Another problem is

inherent in the nature of numerical simulation. A

transition may be entirely missed if its guard is true for a

period that is shorter than the step size used in searching

for transition points. Two transition operators that are

enabled at nearly the same time might be fired in the

wrong order. Finally, a developer may write

specifications that are inconsistent, e.g., two instances of

the EquationalReset scheme with guards that can be

simultaneously true, and reset equations that lead to

different successor states.

6. Results

The specification and synthesis techniques have been

implemented and used successfully to generate over a

dozen different animation programs, each of which runs

in our physics-based animation architecture and generates

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

a real-time animation of a physical scenario. These results

include the examples discussed above (Ball on Steps,

Robot on Track, and Dueling Spaceships). Some of the

additional examples are described below, along with a

description of the system features they demonstrate:

Ball in Box: A ball bounces around the inside of a box.

Several different versions of this example demonstrate use

of the EquationalReset scheme to describe a variety of

ways of modeling collisions between a rigid body and

another object.

Ball in Canal: A ball rolls without skidding around the

inside of a closed track made from two cylindrical

surfaces and two toroidal surfaces. The ball repeatedly

breaks contact with one type surface as it makes contact

with another. This example demonstrates use of mode-

dependent constraints, and use of the EquationalReset

scheme to describe discontinuous changes in velocity that

occur when a mode is changed.

Car on Road Network: A car drives and coasts on an

interconnected set of roads with a variety of branching

points, under user control. The car is constrained to

remain on each road segment as it curves, rises, falls and

banks in various directions. This example also

demonstrates use of mode-dependent constraints, and use

of the EquationalReset scheme to describe discontinuous

changes in velocity that occur when a mode is changed.

Traffic Control: Two cars drive around on separate

circular tracks. The tracks are tangent to each other at one

point. The cars must avoid colliding with each other. If a

car reaches the border of the intersection region, and the

other car is in the region, the first car slows to a stop at a

specified point. It remains there until the other car leaves

the region, and then proceeds through the intersection.

This example demonstrates a single phase instance of the

SpecifiedTermination scheme to describe the process of

waiting for the intersection to be clear, and two separate

single phase instances of the TemporalProjection scheme

to describe the process of decelerating to stop at a

specified point, and accelerating to a specified speed at a

specified point.

Car on Stunt Track: A car drives around a track with an

up-ramp, an open space and a down-ramp. Upon reaching

the up-ramp, the car accelerates up the ramp, flies through

the open space, and lands precisely at the start of the

down-ramp, after which it decelerates to its original

speed. This example demonstrates use of a two-phase

version of the TemporalProjection scheme to describe the

acceleration and flying phases; and a one-phase version of

the same scheme to describe the deceleration phase.

Docking Spaceship: The motion of a spaceship is

controlled by the direction and magnitude of the thrust

generated by its engine. The spaceship undocks and

accelerates away from a space station until reaching a

specified exit point with a specified velocity. It then

accelerates, coasts and decelerates along a curved path to

reach the entry point of a second space station at a

specified velocity. It then decelerates and docks with the

second station at the instant its velocity reaches zero. This

example demonstrates the use of two separate one-phase

versions of the TemporalProjection scheme to describe

the undocking and docking operations, and a three-phase

version of the same scheme to describe the flight from the

exit point of the first station to the entry point of the

second station.

7. Related Work

Shift [Deshpande, et al. 1997] and Charon [Alur, et al.

2000] are general languages for defining, compiling and

simulating hybrid systems. The research underlying these

systems is focused mainly on issues of hierarchical or

compositional modeling, i.e., constructing hybrid systems

from large numbers of fairly simple parts. These systems

provide some specification tools similar to our

EquationalReset scheme; however, they appear to provide

little or no support for specifying the kinds of temporal

relationships that can be expressed using our

ConditionalTermination and TemporalProjection

schemata. Applications of Charon to computer animation

are discussed in [Aaron, et al. 2001] and [Aaron, et al.

2002]. This work uses Charon to model low-level and

high-level navigation strategies for virtual agents

operating in a two-dimensional world. It is based on a

model of (2D) continuous dynamics that is different from

the (3D) analytical dynamics model we used in our

research. Its focus is verification, rather than synthesis. It

presents results of experiments using a hybrid system

model checker (HyTech, [Alur, et al. 1996]) to debug an

animation program.

Research on synthesis and verification of controllers for

hybrid systems is surveyed in [Van Der Schaft and

Schumacher, 2000] and [Labinaz, et al. 1997]. Much of

this work deals with global safety properties of hybrid

systems, i.e., assertions that certain undesirable behaviors

can never occur [Asarin, et al. 2000], [Tomlin, et al.

2000]. For example, a safety condition might assert that

an undesirable region of the mode and state space cannot

be reached from other, desirable regions. In contrast to

this, our work focuses on synthesis of hybrid automata

satisfying local properties, i.e., sequences of transitions

that occur under specified mode, state and time

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

conditions. Furthermore, our specifications affirmatively

describe the desirable behaviors the developer wishes will

occur, such as achieving a target condition, rather than

negatively proscribing behaviors he/she wishes will not

occur. Finally, our work also deals with the problem of

synthesizing an efficient program implementing the

hybrid automaton. Most research on hybrid control

synthesis tends to ignore issues of implementation.

Logics of hybrid systems are discussed in [Davoren and

Nerode, 2000]. This work is based on a semantic model

that is somewhat different from the one presented here. A

satisfaction relation between formulae and hybrid

automata is defined in a two step process: (1) A hybrid

automaton is interpreted as labeled transition system

(LTS); (2) The LTS is deemed to satisfy or not satisfy a

formula according to semantic machinery used in

temporal logics of discrete systems. The resulting logics

appear to be useful for describing global safety properties

of hybrid systems; however, they do not appear to suit our

purposes. The main problem is the absence of a “next” (χ)

operator. In our specifications, we need this operator to

assert the occurrence of transition sequences under

specified conditions. The LTS-based semantics of

[Davoren and Nerode, 2000] could probably be extended

to define the “next” (χ) operator; however, for our

purposes, it seemed simpler to define our own logic from

scratch.

A number of other investigators have developed

automated program synthesis techniques for numerical

computation problems. Some use program scheme

instantiation and transformation techniques that are

similar to the methods of our implementation rules;

however, the applications are generally quite different.

SciNapse uses a knowledge base of transformation rules

implemented in Mathematica to generate programs that

solve partial differential equations [Kant, 1993], [Akers et

al., 1998]. Amphion uses deductive synthesis to generate

programs utilizing libraries of astronomical software
[Lowry et al., 1994]. AutoBayes generates statistical data

analysis programs from declarative descriptions of

problem variables and probability distributions [Gray et

al., 2003], [Fischer and Schumann, 2003]. It uses schema-

guided deductive synthesis, augmented by symbolic-

algebraic computation techniques. AutoFilter synthesizes

programs for state estimation problems [Rosu and

Whittle, 2002]. It generates programs by recursive

instantiation of parameterized program-component

schemata. AutoBayes and AutoFilter also construct proofs

certifying key properties of synthesized programs

[Schumann et al., 2003].

8. Future Work

Many variations on our specification schemata can be

imagined and probably implemented using synthesis

techniques similar to the ones we have developed to date.

One possible extension would develop a scheme for

specifying optimal control strategies based on the

Pontryagin maximum principle [Hartl, et al., 1995].

Another possible extension would define tools for parallel

and sequential composition of specification schemata.

Such tools would allow a developer to define a scheme

instantiation once, and use it repeatedly in several

different contexts. The developer would gradually

construct more and more complex behaviors by

combining simpler ones. Yet another extension would

apply our methods to animation of articulated figures

engaged in walking, running, jumping and similar actions.

Systems of this sort have considerably more variables

than the ones we have investigated to date. It would be

worthwhile to investigate problems of scale that might

arise in specifying and synthesizing programs that

animate such complex articulated figures.

9. Contributions

The long-term goal of this research is to develop a

specification language and synthesis system that is

flexible enough to handle a wide variety of animation

programs, yet restricted enough to permit programs to be

synthesized automatically. We have defined a set of

specification schemata that represent prototype fragments

of the desired language. We have demonstrated that a

number of interesting animation programs can be

specified in terms of these schemata, and synthesized

automatically using rewrite rules that instantiate program

schemata. Finally, we have suggested ways in which our

specification language and synthesis system might be

extended. For these reasons, we believe the research we

have reported in this paper is a significant step toward our

goal.

10. Acknowledgements

The research reported in this paper is supported by Vassar

College. The anonymous referees provided comments

that the author found quite helpful in preparing the final

version of this paper.

11. References

[Aaron, et al. 2001] E. Aaron, F. Ivancic, O. Sokolsky and

D. Metaxas, "A Framework for Reasoning about

Animation Systems". In Intelligent Virtual Agents, LNCS,

2190, Springer, 2001.

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

[Aaron, et al. 2002] E. Aaron, F. Ivancic and D. Metaxas,

"Hybrid System Models of Navigation Strategies for

Games and Animations". In Hybrid Systems:

Computation and Control, LNCS, 2289, Springer, 2002.

[Akers et al., 1998] R. Akers, P. Baffes, E. Kant, C.

Randall, S. Steinberg and R. Young, "Automatic

Synthesis of Numerical Codes for Solving Partial

Differential Equations", Mathematics and Computers in

Simulation, 45, 1998.

[Alur and Henzinger, 1992] R. Alur and T. Henzinger.

"Logics and Models of Real-Time: A Survey". In Real

Time: Theory in Practice, LNCS, 600, Springer, 1992.

[Alur, et al. 1996] R. Alur, T. Henzinger and P. Ho.,

"Automatic Symbolic Verification of Embedded

Systems". IEEE Transactions on Software Engineering",

22, 1996.

[Alur, et al. 2000] R. Alur, R. Grosu, Y. Hur, V. Kumar

and I. Lee, "Modular Specification of Hybrid Systems in

Charon". In Hybrid Systems: Computation and Control,

LNCS, 1790 Springer, 2000.

[Asarin, et al. 2000] E. Asarin, O. Bournez, T. Dang, O.

Maler and A. Pnueli, "Effective Synthesis of Switching

Controllers for Linear Systems". Proceedings of the IEEE,

88, 7, 2000.

[Baruh, 1999] H. Baruh, Analytical Dynamics.

WCB/McGraw-Hill, 1999.

[Davoren and Nerode, 2000] J. Davoren and A. Nerode,

"Logics for Hybrid Systems". Proceedings of the IEEE,

88, 7, 2000.

[Deshpande, et al. 1997] A. Deshpande, A. Gollu, and P.

Varaiya, "SHIFT: A Formalism and a Programming

Language for Dynamic Networks of Hybrid Automata".

In Hybrid Systems IV, LNCS, 1273, Springer, 1997.

[Ellman et al, 2002] T. Ellman, R. Deak and J. Fotinatos,

"Knowledge-Based Synthesis of Numerical Simulation

Programs for Rigid-Body Systems in Physics-Based

Animation". Proceedings of the 17th IEEE International

Conference on Automated Software Engineering, 2002.

[Ellman et al, 2003] T. Ellman, R. Deak and J. Fotinatos,

"Automated Synthesis of Numerical Programs for

Simulation of Rigid Mechanical Systems in Physics-

Based Animation". Automated Software Engineering, In

Press.

[Fischer and Schumann, 2003] B. Fischer and J.

Schumann, "AutoBayes: A System for Generating Data

Analysis Programs from Statistical Models". Journal of

Functional Programming, 2003, In Press.

[Gray et al., 2003] A. Gray, B. Fischer, J. Schumann and

W. Buntine, "Deriving Statistical Algorithms

Automatically: The EM Family and Beyond".

Proceedings of the Conference on Neural Information

Processing Systems (NIPS2002), 2003.

[Hartl, et al., 1995] "A Survey of the Maximum Principles

for Optimal Control Problems with State Constraints",

SIAM Review 37, 2, 1995.

[Kant, 1993] E. Kant, "Synthesis of Mathematical

Modeling Software". IEEE Software, 10, 3, 1993.

[Labinaz, et al. 1997] G. Labinaz, M. Bayoumi, and K.

Rudie, "A Survey of Modeling and Control of Hybrid

Systems". Annual Reviews in Control, 21, 1997.

[Lowry et al., 1994] M. Lowry, A. Philpot, T.

Pressberger, and I. Underwood, "A Formal Approach to

Domain-Oriented Software Design Environments".

Proceedings of the Ninth Knowledge-Based Software

Engineering Conference, Monterey, CA, 1994

[Press et al., 1986] W. Press, W. Vetterling, S. Teukolsky,

and B. Flannery, Numerical Recipes. Cambridge

University Press, New York, NY, 1986.

[Rosu and Whittle, 2002] G. Rosu and J. Whittle,

"Towards Certifying Domain Specific Properties of

Synthesized Code". Proceedings of the 17th IEEE

International Conference on Automated Software

Engineering, 2002, Edinburgh, UK.

[Schumann et al., 2003] J. Schumann, B. Fischer, M.

Whalen and J. Whittle, "Certification Support for

Automatically Generated Programs". Proceedings of the

36th Hawaii International Conference on System Sciences,

2003.

[Tomlin, et al. 2000] C. Tomlin, J. Lygeros and S. Sastry,

"A Game Theoretic Approach to Controller Design for

Hybrid Systems". Proceedings of the IEEE, 88, 7, 2000.

[Van Der Schaft and Schumacher, 2000], A. Van Der

Schaft and H. Schumacher, “An Introduction to Hybrid

Dynamical Systems". Lecture Notes in Control and

Information Sciences, 251, Springer, 2000.

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

Appendix

Example Specifications:

EquationalReset[(* Ball on Steps *)

EventTimes -> {t1,t2},

Guard -> Mode[Ball][t1] == Bouncing && Region[Ball][t1] == Step1 &&

AbsTrans[Contact][t1][[3]]<=AbsTrans[Point1][t1][[3]] && AbsLV[Ball][t1][[3]]<0.0 &&

 RelativeEnergy[Ball, Point1, t1] > EnergyThreshold,

ResetEquations -> BouncingResetEquations[Step1, t1, t2]]

SpecifiedTermination[(* Robot on Track *)

InitialEventTimes -> {t1a,t1b}, FinalEventTimes -> {t2a,2b},

Guard -> Status[Robot][t1a] == Drive && Status[Clock][t1a] == Stopped,

InitializationEquations -> Status[Robot][t1b] == Drive && Status[Clock][t1a] == Running &&

PositionContinuity[t1a,t1b]&&VelocityConstraintsInMode[t1b,{Status[Robot][t1b]->Drive}],

TerminationConditions -> VectorLength[AbsTrans[Robot][t2a] - AbsTrans[Ball][t2a]] <= RobotArmRange,

 FinalizationEquations -> Status[Robot][t2b] == Swing && Status[Clock][t2b] == Stopped &&

PositionContinuity[t2a, t2b] && VelocityContinuity[t2a, t2b]]

TemporalProjection[(* Dueling Spaceships *)

 InitialEventTimes -> {t1a,t1b}, FinalEventTimes -> {t2a,2b},

Guard -> Status[Torpedo1][t1a] == Rest && InRange1[SpaceShip1, SpaceShip2, t1a],

 UnknownValues -> {vX, vY, vZ}, SeedEquations -> {vX == 0.0, vY == 0.0, vZ == 0.0},

InitializationEquations -> Status[Torpedo1][t1b]==Launched&&Status[Torpedo2][t1b]==Status[Torpedo2][t1a] &&

Continuity[SpaceShip1,t1a,t1b] && Continuity[SpaceShip2,t1a,t1b] &&

Continuity[Torpedo2,t1a,t1b] && PositionContinuity[Torpedo1, t1a, t1b] &&

AbsLV[Torpedo1][t1b][[1]] == vX && AbsLV[Torpedo1][t1b][[2]] == vY && AbsLV[Torpedo1][t1b][[3]] == vZ,

DurationCondition -> t1a + TorpedoTransitTime1 == t2a,

TargetConditions -> PositionEquality[Torpedo1, SpaceShip2, t2a],

FinalizationEquations -> Status[Torpedo1][t2b] == Rest && Status[Torpedo2][t2b] == Status[Torpedo2][t2a] &&

Continuity[SpaceShip1,t2a,t2b] && Continuity[SpaceShip2,t2a,t2b] && Continuity[Torpedo2,t2a,t2b] &&

PositionEquality[Torpedo1, TorpedoDock1, t2b] && VelocityEquality[Torpedo1, TorpedoDock1, t2b]]

Example Synthesis Rules:

TPInit[initTs_, finalTs_, unknowns_, seedEqns_, initEqns_, durCond_, targetConds_] ->

 Function[{pgmParms, ctlParms, mode, state, time},

 Let[{{seed, EqnSolution[seedEqns, unknowns]},

 {solution, NonLinearSolution[

 Function[{guess},

 Let[{{projectedState, ProjectedState[initTs, finalTs, unknowns, initEqns, durCond]

 [pgmParms, ctlParms, mode, state, time, guess]}},

Residual[unknowns, finalTs, targetConds]

 [pgmParms, ctlParms, guess, projectedState]]],

 seed]}},

InitialState[initTs, unknowns, initEqns][pgmParms,ctlParms,mode,state,time,solution]]]

ProjectedState[initTs_, finalTs_, unknowns_, initEqns_, durCond_] ->

 Function[{pgmParms, ctlParms, mode, state, time, guess},

 Let[{{initialState, InitialState[initTs,unknowns,initEqns][pgmParms,ctlParms,mode,state,time,guess]},

 {duration, EqnSolution[durCond /. Second[initTs]->0.0, First[finalTs]]}}]

 Integral[DerivativeFunction[pgmParms, ctlParms, mode], state, time, time + duration]]

Proceedings of the 18th IEEE International Conference on Automated Software Engineering (ASE’03)
1527-1366/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

