
Parameterized Interfaces for Open System Verification of Product Lines

Colin Blundell
University of Pennsylvania

Kathi Fisler
WPI

Shriram Krishnamurthi
Brown University

Pascal Van Hentenryck
Brown University

Abstract

Software product-lines view systems as compositions of
features. Each component corresponds to an individual
feature, and a composition of features yields a product.
Feature-oriented verification must be able to analyze indi-
vidual features and to compose the results into results on
products. Since features interact through shared data, ver-
ifying individual features entails open system verification
concerns. To verify temporal properties, features must be
open to both propositional and temporal information from
the remainder of the composed product. This paper ad-
dresses both forms of openness through a two-phase tech-
nique. The first phase analyzes individual features and gen-
erates sufficient constraints for property preservation. The
second phase discharges the constraints upon composition
of features into a product. We present the technique as well
as the results of a case study on an email protocol suite.

1. Introduction

Feature-oriented architectures organize code around the
features that a system contains [34]. By better aligning the
implementation of a system with the external view of users,
feature-orientation offers several potential benefits for soft-
ware engineering such as ease of maintenance, evolution,
and verification. As a result, this style of organization is at
the heart of increasingly important development method-
ologies such as product-line software [17], and provides a
meaningful framework for component reuse.

There is growing support for development around fea-
tures (and the related, more general notion of aspects) [4,
5, 30, 31, 34], but this work largely ignores key ques-
tions of formal verification. In principle, feature-orientation
can simplify verification because both features and require-
ments arise from a user’s view of a system [18]. We can-
not employ a brute-force approach to verification by con-
structing each product individually and verifying it, because
there is a combinatorial number of products in the number
of features, and verification is expensive as individual prod-
ucts grow larger. Ideally, therefore, we would like to ver-
ify requirements against individual feature modules, then

perform lightweight checks to ensure that composition does
not violate these properties. This is challenging because fea-
tures interact subtly, often through shared state [8, 25].

A modular form of feature verification must support data
that propagate across features. This in turn depends on tech-
niques for handling propositions whose values may not be
available when analyzing a single feature because they are
defined elsewhere, making features a form of open system.
This paper presents a verification technique, inspired by
model-checking and applying ideas from flow analysis, that
generates constraints on individual features, then discharges
the constraints during composition to establish system-wide
properties. The novelty of this technique is that the con-
straints are parameterized over the information that makes
features open; furthermore, they are parameterized differ-
ently based on the nature of the open information. This
results in generated interfaces that are more concise and
precise than in previous modular feature verification tech-
niques. Our new technique also lifts properties of individ-
ual features to composed systems, whereas prior techniques
checked only for local interactions between features.

One observation from our work is that traditional model
checking does not mesh well with the needs of modular ver-
ification of features. Model checking is primarily designed
to authoritatively determine the truth or falsity of properties
over models. However, most of the property violations we
observe arise only upon composition, because some com-
positions satisfy properties while others fail them. There-
fore, most verification runs over individual features are (and
must be) inconclusive, pushing the burden onto the compo-
sition step. Trying to map this to a traditional model check-
ing framework can be unsatisfying due to the preponder-
ance of inconclusive answers (see Section 3.2). Instead, the
problem becomes one of generating constraints as interfaces
to be discharged during composition, rather than merely
checking properties. While interface generation in general
is hard, we use properties to make this process tractable, re-
sulting in a technique that employs property-driven inter-
face generation.

The key parts of the paper are an overview of the sub-
tleties of modular feature verification and an outline of our
prior approach to this problem (Section 3), our new tech-
nique (Section 4), experimental results (Section 5), and a

1



discussion of perspective and limitations of our result, in-
cluding directions for future work (Section 6).

2. Background on CTL and Model Checking

Model-checking [15] is an automated verification tech-
nique used to establish properties of finite-state systems. A
model-checker consumes a description of a system, usually
given as a state machine, and a specification of a property
that the system must obey. The state machine can be non-
deterministic. The property is typically written in a tempo-
ral logic such as CTL [15].

The atoms of CTL are propositions that label states.
CTL permits combination of these atoms using the standard
propositional operators and connectives (negation, conjunc-
tion, implication, etc). In addition, CTL can capture tempo-
ral properties. A formula of the form [φ U ψ ] (where φ and
ψ are both CTL formulas) is true at a state if φ is true now
and in the future until a state where ψ is true (read the U as
“until”). Because many paths leave a state, we must quan-
tify this formula by whether we expect the property to hold
in all possible future worlds or only in some. The CTL for-
mula A[φ U ψ ] expects that on All paths, φ will hold in
every state until a state where ψ is true, while E[φ U ψ ] re-
quires that there Exists a path where this holds. In this paper
we also use AG, whose sub-formula must hold in all states,
and EF, whose sub-formula must hold in at least one fu-
ture state.

CTL model-checkers processes the sub-formulas of the
property bottom-up, labelling each state of the state ma-
chine with precisely those sub-formulas that are true at that
state. Our verification technique relies on these labels.

3. Problem Motivation

3.1. Why is Feature Verification Subtle?

Consider an email feature suite that includes components
for anonymous remailing and message signing.1 A prod-
uct might include these two features and basic mail deliv-
ery, as shown in Figure 1. In this paper we employ state ma-
chines to model systems, relying on either program analyses
over source, or state machine domain-specific languages, as
sources of these models.

A feature consists of both a state machine and a set of
interfaces. An interface specifies states to which new fea-
tures attach (via both incoming and outgoing edges). In the
REMAIL feature from Figure 1, for example, the interface
would specify that edges leave from states r1 and r2 and en-
ter at r0. Features within a system compose in a pipe-and-
filter architecture [33], beginning and ending in some basic

1 These examples come from a suite due to Robert Hall [23].

infrastructure that is common to all products within the fam-
ily (such as basic mail delivery, in the email example); we
call this the base product. Composing features into prod-
ucts involves adding edges between interface states.

In our running example, the requirements state that when
a product uses the REMAIL feature, a message marked for
anonymous remailing should remain anonymous until it is
mailed. The temporal logic formula

φ = AG(remailed → A[anonymous U ¬mailed])

captures this property. Digital signing circumvents
anonymity; verifying this property should therefore re-
sult in an error owing to the interaction between remailing
and digital signing. If we interpret anonymous as re-
mailed ∧¬signed, the sample product in Figure 1 would vi-
olate this property on a path that includes the upper path of
states through the SIGNING feature. The compositional ver-
ification challenge is to detect this interaction without
model checking the full product, because the total num-
ber of products explodes combinatorially in the number
of features, making it infeasible to conduct an expen-
sive whole-program traversal over each product. Instead,
we must analyze the features separately, generate appro-
priate interfaces on each feature for preserving properties,
and check for interactions by combining interface informa-
tion at product assembly time.

The CTL model-checking algorithm does not inher-
ently support modular feature verification. For instance, if
a model checker evaluated φ in the initial state of the RE-
MAIL feature alone, it would report the property as
false because REMAIL does not mention the proposi-
tion mailed (therefore assumed to be false, which vio-
lates the AU). However, when verifying individual fea-
tures, a model checker cannot assume that propositions
are false simply because they do not label states of a fea-
ture: some propositions are asserted in later features, while
others are asserted prior to executing a feature and their val-
ues persist until explicitly changed.

Consequently, any verification algorithm must distin-
guish between two different uses of propositions of un-
known value within a state machine, which we name con-
trol propositions and data propositions [29]. Control propo-
sitions capture settings from the (user) environment of the
system, such as wantsRemail? in Figure 1. Data proposi-
tions capture attributes of data in the system, such as signed
and remailed. The verifier must treat data propositions as
persistent: their values hold across features until changed by
an assignment. Control propositions are not persistent, get-
ting their value solely from the labelling functions (and as-
sumed false at a state if not explicitly labeled). Our model
(definition 3) asks the designer to explicitly identify the data
propositions of a feature.

2



wantsRemail?

!wantsRemail?

anonymize
remailed

signed

SIGNING

s1

s2

sign

r1

r0 r2

REMAIL

hasSignKey?

!hasSignKey?

s0

init mailedi0
BASE

i1

Figure 1. A simple email product with remailing and message signing. The dashed transitions show
one possible assembly of features into a composed product. Another assembly might permute the
order of features. In the state machines, ! denotes logical negation, propositions ending in ? repre-
sent control decisions, and all other propositions represent data attributes of email messages. Iden-
tifiers next to states name those states for reference throughout the paper, except anonymize and
sign, which are abstractions representing portions of the state machine whose details are not rele-
vant to this example.

An additional problem is that individual features con-
tain only a portion of the entire product’s state space: the
model checker therefore lacks information about the prop-
erties that hold along paths that emanate from the feature.
For REMAIL to satisfy φ , paths that leave from state r2 must
eventually mail the message; it is possible to use REMAIL
in two different products such that one satisfies this prop-
erty and one does not. At best, therefore, a model checker
can only traverse the feature and determine what constraint
it imposes on the features that eventually connect to it.

3.2. A Problematic Prior Approach

These scenarios point to two problems in the use of
model checking for modular feature verification: traditional
model checkers are based on binary logic and on closed-
world assumptions. Three-valued model checking [9] ap-
pears to address both problems. In prior research [29], we
exploited three-valued logic for modular feature verifica-
tion by setting all unknown propositions in a feature to
⊥ prior to model checking. However, checking property
ψ = AG(remailed → A[¬signed U ¬mailed]) against the
SIGNING feature in this framework would return the value
⊥, because under this substitution the property reduces to
AG(⊥ → A(¬signed U ⊥)). This result indicates nothing
other than that the truth of the property depends on more

than the variables in the SIGNING feature. Worse still, re-
ducing the unknown variables to ⊥ before verification pre-
vents reasoning about the property once features are com-
posed and actual values for those variables are available.
Used naively, this approach seems worse than no modular
verification at all!

To ameliorate this situation, our prior work analyzed fea-
tures relative to certain specific combinations of values for
unknown propositions (as described in Section 5). This un-
fortunately leads to a potentially exponential number of
both model checking runs and interfaces for modular ver-
ification. A more scalable solution is clearly required.

4. The Solution

4.1. Insight

Mapping all unknown propositions to ⊥ early in modu-
lar verification incurs potentially high overhead in order to
allow specializing interface constraints with values of un-
known propositions when they become known (at composi-
tion time). The key insight of this paper is: parameterizing
interfaces over the unknown propositions controls interface
explosion without sacrificing precision. A secondary, and
more subtle, insight is that we can parameterize over these
propositions differently depending on whether they are de-

3



fined in prior or subsequent features. From the perspective
of the SIGNING feature on property ψ , for example, the re-
mailed proposition is constrained propositionally (based on
its value from REMAIL), while mailed is constrained tem-
porally (based on paths that satisfy it through MAIL).

Given a feature F and a property, our methodology gen-
erates a constraint consisting of two formulas, one propo-
sitional and the other temporal. The propositional formula
summarizes the effect of F on data propositions. The tem-
poral formula constrains the behavior of features that fol-
low F ; since the validity of the property in F may depend
on values of propositions set in prior features, this tempo-
ral formula is parametric over the unknown propositions of
F. (This association of the temporal constraint with features
that follow F arises from our use of CTL, which is a future-
time temporal logic.) These constraints become part of a
feature’s interface.

We use the interfaces generated for each feature and
property to determine whether that property holds over a
composition of features. This reduces to the problem of
instantiating the parameterized temporal constraints and
checking their validity. The values for the parameters come
from both the propositional summaries of prior features and
the validity of temporal constraints of later features.

The rest of this section uses the email example to illus-
trate our technique in more detail. We will assume that a
product family will be built from a set of n features and a
base product for the family. Assume that the requirements
for features in the family are known, and have been ex-
pressed as CTL formulas.

4.2. Models of Features and Products

Space constraints limit us to a partial explanation of the
foundations backing our informal presentation. We request
the interested reader to consult our extensive technical re-
port [7], which offers a complete formalization as well as
full proofs of soundness.

Our formal model of feature-oriented systems views
each feature as a single state machine with potentially many
initial states. In realistic systems, many entities participate
in a feature, so a feature would be defined by a parallel com-
position of state machines for each such entity. Our previous
work shows how to reduce models where each feature has
multiple state machines to the single-machine model [18],
so we adopt the single-machine model here for simplicity.

Definition 1 A state machine is a tuple 〈S,Σ,∆,S0,R,Tr,Fa〉
where

• S is a set of states,

• Σ and ∆ are sets of input and output propositions,

• S0 ⊆ S is the set of initial states,

F1 F3

F2

base product

s2

s1

s3
s4

s5

s6

b1 b2

d
m

Composed product

Figure 2. Inserting a feature into a product

• R ⊆ S ×PL(Σ)× S is the transition relation, where
PL(φ) denotes the set of propositional logic expres-
sions over the set of propositions in φ ,

• Tr : S → 2∆ indicates which propositions are
set to true in each state, and Fa : S → 2∆ indi-
cates which propositions are set to false in each state
(∀s ∈ S,Tr(s)∩Fa(s) = /0).

This definition is standard, with one important exception. In
the style of open systems we analyze here, the law of the
excluded middle does not hold: the absence of a label does
not imply its falsity. Our model therefore employs distinct
labeling functions for true and false labels.

Feature composition adds edges between interface
states. Outgoing states have a connection specifica-
tion, a boolean expression over output propositions. Com-
position adds edges from each outgoing state to all the
incoming states whose true and false labels satisfy the con-
nection specification.

Definition 2 A base product consists of a state machine
M and an interface 〈{soutgoing}Sconnect,Rout〉 such that if S
and R are the states and transitions of M, then soutgoing ∈ S,
Sconnect ⊂ S, Rout is a set of connection specifications for
soutgoing, and R contains edges from soutgoing to each state in
Sconnect (composition replaces these edges with features).

Definition 3 A feature is a state machine captured by the
tuple (S,Σ,∆,S0,R,Tr,Fa) with an interface 〈S0,Sexit,Rexit〉
and a set of data propositions D where

• All propositions in D lie in the domain of at least one
of Tr or Fa.

• Sexit ⊆ S is the set of terminal states of the feature;
these states must have out-degree 0.

• Rexit is a set of connection specifications for states in
Sexit.

Our formal model supports two techniques for com-
bining features: features can be composed into compound
features, and features (atomic or compound) can be com-
bined with base products to form complete products. Fig-
ure 2 shows a product consisting of a base product and
two features F1 and F3, and the insertion of feature F2 into
this product. The insertion is performed via an interface

4



〈{s1,s2},{s6}〉. The interface on F2 is 〈{s3},{s4,s5}, /0〉.
Composition removes the dashed edges (so control routes
through the new feature, with edges replaced by paths) and
adds the four edges that connect F2 to the product.

4.3. Generating Constraints

Given a feature and a property (expressed as a CTL for-
mula), the algorithm generates a temporal constraint that is
parameterized over the features attached fore and aft, and
a data environment, which summarizes the persistent data
values that the feature passes to subsequent features. The
temporal constraints and data environment form a feature’s
interface. For a given set of properties and features, this in-
terface can be generated once for each feature and reused
over multiple product assemblies. We now explain each of
these in turn.

The temporal constraint generator is a variant of the tra-
ditional CTL algorithm. It runs on every subformula of ev-
ery property and, instead of returning only truth or false-
hood, generates a formula in a variant of CTL. This variant
language is easily explained with an example. Consider the
property

ϕ = AG(remailed → EFmailed)

which states that a message marked as remailed can even-
tually be mailed. Generating constraints on ϕ at the initial
state (r0) of REMAIL yields the annotated formula

ϕr1 ∧ (¬remailed∨ (remailed∧ (EFmailed)r1))
∧ ϕr2 ∧ (EF mailed)r2

The subscripts (tags) on formulas contain names of termi-
nal states in the feature; a tagged formula denotes the value
of that formula in the successor states to the tag state (these
values are available at product assembly time). Intuitively,
this constraint says that the entire property must hold in the
successors to both r1 and r2 (from ϕr1 and ϕr2): this is ex-
pected, since an AG property must hold in every state of
the composed system. The constraint further requires that
control can eventually reach a mailed state from r1 un-
less remailed is already false. The constraint is simpler for
r2, because a path to r2 is known to satisfy the remailed
proposition. In general, the generated formula uses names
of propositions to parameterize over the data environment
and tagged subformulas to parameterize over the exit paths.

In contrast to the temporal constraint, which delimits the
behavior of subsequent features, the data environment pro-
vides persistent propositional values to subsequent features.
Each feature effectively updates the data environment in
turn for the next feature in the product. We compute data
environments via a meet-over-all-paths analysis [26].2

2 Our work goes beyond dataflow analysis in that it not only gathers in-
formation but also actually performs verification.

A data environment maps each terminal state st in a fea-
ture to a set of of pairs 〈s0,V 〉, where s0 is an initial state and
V captures the latest values assigned to propositions along
a path from s0 to st . The data environment for the REMAIL
feature shown in Figure 1 maps state r1 to

〈r0, /0〉

(because no data propositions occur on a path from r0 to r1)
and maps state r2 to

〈r0,{〈remailed, true〉}〉

The proposition wantsRemail? does not appear in the data
environment because it is a control proposition. Simi-
larly, the SIGNING feature’s data environment maps s1 to
〈s0,{〈signed, true〉}〉 and state s2 to 〈s0, /0〉.

Formal Details The details in this section are intended for
readers already familiar with the CTL model checking algo-
rithm. Due to space constraints, we defer the full algorithms
to the technical report.

Intuitively, the constraint-generation algorithm (hence-
forth called CONSTRAIN) partially evaluates the given prop-
erty over the feature, under the assumption that data propo-
sitions persist along paths. The algorithm handles persis-
tence by storing the most recent value of each data proposi-
tion along the current path in a variable (path-env).

CONSTRAIN has the same recursive structure as the CTL
model checker, but diverges from it to parameterize over
data environments and terminal state properties during this
partial evaluation. The significant deviations are in the treat-
ment of propositions and of terminal states. For proposi-
tions, the result of the CONSTRAIN algorithm depends on
the nature of the proposition:
• The values of data propositions of the feature being

verified come from the path-env argument.

• If the proposition is a control proposition of the fea-
ture, its value comes from the labeling functions Tr
and Fa. Control propositions capture user or environ-
mental decisions, and do not appear in path-env.

• If the proposition is a control proposition of another
feature, its value must be false in this feature. This sit-
uation can arise when checking a property that is pri-
marily about one feature in another feature. For exam-
ple, the wantsRemail? proposition in the REMAIL fea-
ture should be treated as false while analyzing SIGN-
ING. We provide other examples of such propositions
in our prior work [29].

• Otherwise, the proposition is a data proposition of an-
other feature and its value will (eventually) come from
the incoming data environment. The CONSTRAIN algo-
rithm inserts the proposition itself into the constraint
formula, which parameterizes the constraint over the
value from the data environment.

5



In addition, when the CONSTRAIN algorithm reaches a
terminal state of the feature, it cannot evaluate the formula
as the successor states will not be available until composi-
tion time. The algorithm parameterizes the constraint over
the possible successors by tagging the subformula that must
hold at those successors.

Data environments summarize the values assigned to
propositions along paths between specific initial and termi-
nal states of a feature.

Definition 4 Let F be a feature with data propositions DP.
Let Π be a path s0, . . . ,st in F where s0 is an initial state
and st a terminal state in F.

1. The data value for Π is the set of tuples 〈p,v〉 where
p ∈ DP and v is the last value for p set on Π.

2. Let st be a terminal state of F. The data environment
of F at st is the set {〈s0,DV 〉} such that s0 is an initial
state with a path to st and DV is the set of data values
for all paths from s0 to st .3

The constraint discharge algorithm will use data envi-
ronments to look up the last value given to a proposition
along paths between a particular initial and terminal state.
As there may be multiple such paths, it is possible that dif-
ferent paths between the same states set a proposition to
different values. When this happens, the lookup method re-
turns ⊥. This use of ⊥ differs from that in our prior three-
valued approach in two key ways. First, this ⊥ represents
“both values are possible” rather than “no information”,
which is useful for identifying when properties might fail.
Second, this ⊥ is introduced at composition time (when all
information is available) rather than prematurely at feature
verification time. Using ⊥ therefore does not reflect a loss
of information, as it did in our prior approach.

Subtlety When computing the data environment for the
base product, the algorithm first removes all edges between
the interface states. Base products generally contain edges
that restart the product on new data (such as an edge from
the mailed state to the init state in Figure 1, not shown in
the figure). These edges can cause data propositions to in-
correctly leak across runs of the product. Removing these
edges ensures that the data environment of the base prod-
uct accurately reflects the data available to the features at
the start of each new pass through the product.

4.4. Discharging Constraints

Discharging a constraint entails reducing it to a concrete
logical value at composition time. Recall the constraint gen-

3 A standard fixpoint construction handles infinitely many paths.

erated from property ϕ for REMAIL:

ϕr1 ∧ (¬remailed∨ (remailed ∧ (EFmailed)r1))
∧ ϕr2 ∧ (EF mailed)r2

To reduce this to a value, we need concrete values for the
remailed proposition and for the tagged temporal formu-
las. The value of the former comes from the data environ-
ment summarizing the preceding features. The values of the
latter come from discharging constraints on the subsequent
features, and propagating the results. The process involves
three steps.

First, the constraint generation phase produced data en-
vironments for each preceding feature individually. To sum-
marize the preceding features collectively, we compose
their data environments; this composed data environment
offers a concrete logical value for each proposition in the
constraint to be discharged. Composing data environments
Di and D j yields a data environment over the propositions
in either Di or D j, where values from D j override values
for the same propositions from Di. Composing the data en-
vironments given above for REMAIL and SIGNING (corre-
sponding to feature composition via the dashed transitions
in Figure 1) yields the environment that maps s1 to

〈s0,{〈signed, true〉,〈remailed, true〉}〉

and state s2 to 〈s0,{〈remailed, true〉}〉.
Second, we substitute propositions with their val-

ues from the composed data environment. In the con-
straint on REMAIL, for instance, we replace remailed with
the value true from the data environment above.

Finally, the values of the tagged temporal formulas come
from the results of discharging constraints on the subse-
quent features. Assume we have finished discharging con-
straints on the SIGNING feature, which follows REMAIL in
our running example. Discharging constraints on SIGNING
results in concrete values for each subformula of ϕ in the
initial state s0 of SIGNING. The constraint on REMAIL con-
tains the tagged subformula (EF mailed)r1 . We substitute
the value of (EF mailed) in s0 for (EF mailed)r1 (because
s0 is the successor to r1 in the composed system). Repeat-
ing this step for each tagged subformula in the constraint
yields a propositional formula, which a validity check re-
duces to a concrete value. This value becomes the value
of ϕr0 when discharging constraints on the preceding fea-
tures. Note that this step requires only substitution of previ-
ously computed results, not model checking; hence the ap-
proach is compositional. This step may, however, require
three-valued propositional reasoning as data environments
may return ⊥ for some propositions (hence the method is
incomplete). 4

4 This method is unoptimized and checks the values of many constraints

6



Summary To summarize the process, assume the client has
chosen a sequence of m of the original n features to assem-
ble into a product, and has composed the features in order
along with a base feature. Let F1, . . . ,Fm denote features, Di
the data environment induced by Fi, ◦ a composition opera-
tor for data environments, Ci the temporal constraint on Fi,
and check(Ci) the result of discharging constraint Ci. The
following steps summarize the methodology:

step compute using
1. check(Cm) check(base) and D1 ◦ . . .◦Dm−1
2. check(Cm−1) D1 ◦ . . .◦Dm−2 and check(Cm)

...
m. check(C1) D1 ◦ . . .◦Dbase and check(C2)

Finally, use check(C1) to discharge constraints on the base
product. If the constraint on a property ϕ holds in the initial
state of the base product, then ϕ holds of the composed sys-
tem. If a validity check on ϕ fails to return true at the initial
state of some feature, there may exist a path that fails to sat-
isfy that property; potential feature interactions are reported
in this instance.

Subtlety When computing constraints and data environ-
ments for the base, we divide the base into the portions that
precede and follow the introduction of new features; remov-
ing the edges between the interface states of the base ac-
complishes this. No features follow the final states in the
base product, so generating check(base) amounts to stan-
dard CTL model checking.

4.5. Where Does Verification Actually Happen?

When a system violates a property, it might do so in one
of three different scenarios. First, a feature implementation
is inherently incorrect, and the error can be detected by an-
alyzing that feature alone. Second, the feature implementa-
tion is incorrect in the presence of some but not all collabo-
rating modules. Third, each of the feature implementations
is valid, but their composition interacts in a way that vio-
lates a system property.

Constraint generation detects errors of the first kind.
It traverses each feature to derive the assumptions under
which the property holds; if the feature itself violates the
property, constraint generation will return false. This is akin
to property violation in traditional model checking.

Errors of the second and third kind do not get detected
until constraint discharge. These errors manifest during dis-
charge in the form of a constraint evaluating to false. If
discharging completes with all constraint checks returning
true, then the property holds over the composed system.
Additional traversal of the state machines is not required to

whose values are unused at assembly time. An optimized version
would check only those constraints that are needed to discharge the
tagged formulas in other states.

detect either kind of error. All state machine traversal hap-
pened during the initial constraint generation.

4.6. Soundness

The proposed methodology is sound if using it to ver-
ify a property yields the same result as verifying the prop-
erty with standard model checking in the initial state of the
composed system. The heart of the argument is that check-
ing a constraint at a particular state of a feature F under a
given data value V (Definition 4) yields the same result as
verifying the constraint in that state in an augmented fea-
ture FV

′ that sets values of propositions according to the
data value. Such a result defines how properties would be
evaluated in the composed system, where all data propaga-
tions occur naturally and there is no need for a temporal
constraint because the entire state space is available at anal-
ysis time. This argument (formalized in the following theo-
rem) summarizes the overall soundness proof. The details,
including proofs, are in the technical report.

Theorem 1 Let F1 and F2 be features, s be a state in F1, and
ϕ a CTL formula. Let V be a data value coming into F1. Let c
be the result of CONSTRAIN(F1,ϕ ,s). Let c′ be c with every
annotated formula ψst replaced with the value of ψ (true,
false, or ⊥) in the initial state of F2. Then F1V

′ ◦F2,s |= ϕ
if V satisfies c′.

5. Experimental Study

We have implemented the methodology described in this
paper and tested it on features and properties from Hall’s
email case study [23]. Our experiment was intended to de-
termine whether the parameterized constraints were suffi-
cient for modularly predicting the results of verifying prop-
erties in the composed product; in other words, we wanted
to test how often the incompleteness of our approach af-
fected verification in practice.

Because our algorithm is different from ordinary model
checking, we cannot reuse an off-the-shelf model checker.
We have therefore implemented our own prototype checker.
Since the checker is a prototype built as a proof-of-concept,
the performance numbers are not very meaningful. Never-
theless, the performance would be similar to that of a model
checker, due to the deep structural similarity between a CTL
model checker and our CONSTRAIN algorithm.

Hall’s case study contains the following features: ba-
sic mail delivery, digital signatures, forwarding, anony-
mous remailing, encryption, decryption, signature verifica-
tion, auto-reply, filtering (based on sender’s hostname), and
mail hosting. The requirements we verified are:

1. Once a message is signed, the sender field is not al-
tered until the message is delivered or received.

7



2. When a message is ready to be remailed, it is never
mailed out with the sender’s identity exposed.

3. If a receiver tries to verify a signature, then the mes-
sage must be verifiable.

4. When a message is encrypted, it is never decrypted and
then sent in the clear.

5. If a message is to be remailed, it is formatted correctly
for the remailer to process it.

6. If an auto-response is generated, the response eventu-
ally is delivered or received.

7. There is no loop where messages are infinitely mailed
back and forth.

8. If a message is forwarded, it is eventually delivered or
received.

9. If the auto-responder replies to a message, then that
message’s subject line must be in the clear.

10. If an outgoing message is signed, its body is never
changed unless is it delivered or retrieved.

11. If a mailhost generates an error message, then that
message is eventually retrieved or delivered.

Each of these properties holds in the feature that implements
it. Each property also fails when the feature that implements
it is composed with another (specific) feature. These prop-
erties are therefore useful for testing a modular technique.

Our experiment was successful, in that:

1. our technique correctly detected that the system failed
each of these properties,

2. error detection required no traversals of the features
beyond the constraint-generation phase, and

3. constraint discharge flagged the errors through propo-
sitional checks alone.

The incompleteness of our technique did not appear in prac-
tice, as the methodology did not return ⊥ on any property.

6. Perspective and Future Work

Our case study shows that our new technique supports
modular verification at least as well as our prior, three-
valued, technique [29]. The following table shows the key
differences:

Prior New
Traversals per interface generation 6 1
Persistent data propositions handled weakly yes
Properties lifted to entire system no yes
Each feature traversed per property no yes

The parameterized interfaces in the new technique reduce
the number of state machine traversals required. The old
technique avoided the subtleties in handling persistent data
propositions by reducing open propositions to ⊥; the new
technique handles them directly with data environments.

The new technique appears inferior to the old technique
only in the last line of the table, but this disadvantage is re-
lated to the advantage in the third line. The old technique
did not always need to traverse each feature per property be-
cause the goal in the prior work was to detect when one fea-
ture violated properties true in the initial state of another: it
did not attempt to “lift” the properties of one feature to the
(initial state of the) entire composed system. In this work,
we have shifted our attention to proving system-wide prop-
erties. Our algorithm determines whether a property holds
in the initial state of the entire composed system. Traversing
each feature per property is an unoptimized way to accom-
plish this lifting. In practice, we believe we can optimize
this by making some of the traversals less expensive (e.g.,
checking reachability instead of computing constraints).

Traversing each feature per property appears to defeat
the benefit of modular verification, which is usually to avoid
traversing the entire state space. Our previous comment
about optimization speaks to this issue, but there is a more
fundamental answer. In a product-line context, modular ver-
ification avoids traversing each feature per property per
composed product. Given that a set of features can yield an
exponential number of products, limiting state space traver-
sal to once per feature represents a significant cost savings
over naive verification. Our algorithm provides this.

Our work does make some simplifying assumptions that
we intend to address. First, while features may contain cy-
cles internally, the graph of connections between features
must form a DAG. This is less of a restriction than it seems,
because feature compositions often take the form of pipe-
and-filter systems. Indeed, our architecture is very similar to
a version of the Jackson-Zave DFC model of features [24]
restricted to static composition, and is therefore useful for
modeling a wide variety of systems. (The systems used in
case studies by Batory’s group, such as FSATS [6], also
obey this model.) Also, the CONSTRAIN algorithm assumes
that no cycle within a feature sets the value of a data propo-
sition (it handles all other internal cycles without imposing
any restrictions—thus, for instance, it can freely handle sys-
tems with assignments to local data such as loop counters).
We could relax this by setting the proposition’s value to ⊥,
but our case study did not require it.

7. Related Work

There is a significant body of work on open system veri-
fication. The openness in prior work stems from both uncer-
tainty in transitions and ignorance of propositions. Kupfer-

8



man, Vardi and Wolper address the former [27]. Their work
considers the failure of properties due to values generated
by environment models. In particular, their methodology re-
quires a property to hold in all environments; it does not
classify the environments in which a property fails to hold.
In features, however, many property violations arise in only
some contexts but not all. The Kupferman, et al. approach
is therefore too restrictive in this setting.

Bruns and Godefroid consider properties that arise from
partial Kripke structures, therefore having propositions of
unknown value [9, 10]. They use a three-valued logic to pre-
serve properties of the partial system in the complete struc-
ture. They handle the lack of parameterization under three-
valued logic by performing two model checks on formulas
with unknown values, one assuming all ⊥ values are true
(optimistic) and one assuming all ⊥ values are false (pes-
simistic). A generalization of Bruns and Godefroid’s tech-
nique is to use multi-valued model checking, pioneered by
Chechik, Easterbrook and Devereaux [14]. Neither of these
bodies of work discusses compositional verification.

Compositional verification is a well-explored idea [1].
Most of this work, however, examines the problem for
parallel composition and assumes that composition does
not add behavior to modules. The sequential composition
model of features violates this assumption. Furthermore,
few explicitly handle open systems in which the existence
of propositions is unknown at module analysis time and al-
most none consider how to generate interfaces, as we do.

Our work on interface generation has an analog for
parallel composition: Giannakopoulou, Păsăreanu and Bar-
ringer [20] generate automata as interfaces for labeled tran-
sition systems. Given the difference in composition model,
the relationship between our works is unclear. Houdini [19]
infers annotations for ESC/Java, but these annotations are
not property-driven and the approach is not truly modular.

Some work considers modular model checking under
sequential control flow [2, 16, 28]. Those works focus
on making verification of a single system more tractable.
Our work targets the plug-and-play world of product-lines,
which requires constraint and interface generation rather
than just model checking. None of those works explicitly
handle the open systems and data persistence problems dis-
cussed here.

Our approach to constraint generation resembles tempo-
ral query checking, originally due to Chan [12]. Chan’s ap-
proach assumed one variable per temporal logic formula
and instantiated it with a propositional formula over vari-
ables in the model. Gurfinkel et al. [21] and Bruns and
Godefroid [11] support multiple variables but still generate
propositional constraints over model variables. Our work
generates temporal constraints over propositions that are not
in the model (since features are open systems). Our tempo-
ral constraints use subformulas of a given property formula;

this restricted context enables temporal constraint genera-
tion in open systems.

Our methodology detects a special case of feature inter-
action errors [3, 8, 25], corresponding roughly to what Hall
calls Type II interactions [22]. None of the other cited ap-
proaches detect interactions compositionally. Chechik and
Easterbrook reason about compositions of concerns using
multi-valued model checking [13]. Their framework identi-
fies which concern (feature) is responsible for property vio-
lations when checking composed systems, but does not ad-
dress proving properties through compositional reasoning.

Reussner [32] gives a theory of parameterized contracts.
These contracts recognize that, when reusing a large com-
ponent, different clients will need only parts of it; corre-
spondingly, clients should need to satisfy only a part of the
component’s precondition. To support these scenarios, this
technique specializes interfaces at composition time, em-
ploying automata-theoretic algorithms to compute these in-
terfaces. In this respect, it is related to the constraints we
derive. However, it assumes the existence of a fairly com-
plete (manual) description of the component’s behavior as
the starting point for specialization, rather than exploiting
the properties to automatically generate the interfaces.

8. Summary

This paper presents a compositional methodology for
verifying features as open systems. By definition, any tech-
nique that attempts to verify open systems modularly must
contend with insufficient information. The technique in this
paper exploits a key insight about the nature of openness
in compositional feature verification: openness arises from
both propositional values flowing into a feature and tempo-
ral constraints on the control flow leaving a feature.

Concretely, this paper presents an algorithm that de-
rives parameterized interface information to account for
openness. We employ a flow analysis to derive a proposi-
tional formula summarizing the data values that each feature
provides to subsequent features; using a variant of model
checking, we derive a temporal constraint on the succes-
sor states of each feature. A series of simple propositional
checks on the resulting constraints at composition time de-
termines whether compositions of features violate system-
wide properties. This approach is compositional because the
latter checks rely only on the generated information, and do
not re-visit the innards of individual features.

This technique improves on prior approaches that em-
ploy three-valued model checking to address openness. By
separating the sources of openness, we are able to limit the
use of three-valued reasoning to the propositional data and
to composition time alone. This leads to interfaces that are
simpler and more accurate without a large explosion in their
size. In addition, our technique performs only propositional

9



calculation, not model checking, at composition time, mak-
ing this a lightweight step.

References

[1] M. Abadi and L. Lamport. Conjoining specifications.
ACM Transactions on Programming Languages and Sys-
tems, 17(3):507–534, 1995.

[2] R. Alur and M. Yannakakis. Model checking of hierarchical
state machines. In Symposium on the Foundations of Soft-
ware Engineering, pages 175–188, 1998.

[3] C. Areces, W. Bouma, and M. de Rijke. Feature interaction
as a satisfiability problem. In M. Calder and E. Magill, ed-
itors, Feature Interactions in Telecommunications Systems.
IOS Press, 2000.

[4] Aspect oriented programming (article series). Communica-
tions of the ACM, 44(10), Oct. 2001.

[5] D. Batory. Product-line architectures. In Smalltalk and Java
Conference, Oct. 1998.

[6] D. Batory, C. Johnson, B. MacDonald, and D. von Heeder.
Achieving extensibility through product-lines and domain-
specific la nguages: A case study. ACM Transactions on Soft-
ware Engineering and Methodology, April 2002.

[7] C. Blundell, K. Fisler, S. Krishnamurthi, and P. V. Henten-
ryck. A constraint-based approach to open feature verifica-
tion. Technical Report CS-03-07, Brown University Depart-
ment of Computer Science, May 2003.

[8] K. Braithwaite and J. Atlee. Towards automated detection of
feature interactions. In Feature Interactions in Telecommu-
nications Systems, pages 36–59. IOS Press, 1994.

[9] G. Bruns and P. Godefroid. Model checking partial state
spaces with 3-valued temporal logics. In International
Conference on Computer-Aided Verification, LNCS number
1633, pages 274–287. Springer-Verlag, 1999.

[10] G. Bruns and P. Godefroid. Generalized model checking:
Reasoning about partial state spaces. In International Con-
ference on Concurrency Theory, LNCS number 877, pages
168–182. Springer-Verlag, 2000.

[11] G. Bruns and P. Godefroid. Temporal logic query checking.
In IEEE Symposium on Logic in Computer Science, pages
409–417. IEEE Press, 2001.

[12] W. Chan. Temporal-logic queries. In International Confer-
ence on Computer-Aided Verification, pages 450–463, 2000.

[13] M. Chechik and S. Easterbrook. Reasoning about composi-
tions of concerns. In Proceedings of the ICSE Workshop on
Advanced Separation of Concerns, May 2001.

[14] M. Chechik, S. M. Easterbrook, and B. Devereux. Model
checking with multivalued temporal logics. In International
Symposium on Multiple Valued Logics, 2001.

[15] E. Clarke, E. Emerson, and A. Sistla. Automatic verification
of finite-state concurrent systems using temporal logic spec-
ifications. ACM Transactions on Programming Languages
and Systems, 8(2):244–263, 1986.

[16] E. M. Clarke and W. Heinle. Modular translation of Stat-
echarts to SMV. Technical Report CMU-CS-00-XXX,
Carnegie Mellon School of Computer Science, August 2000.

[17] P. Clements and L. Northrop. Software Product Lines: Prac-
tices and Patterns. Addison-Wesley, 2002.

[18] K. Fisler and S. Krishnamurthi. Modular verification of
collaboration-based software designs. In Joint European
Software Engineering Conference and ACM SIGSOFT Symp
on the Foundations of Software Engineering, Sept. 2001.

[19] C. Flanagan and K. R. M. Leino. Houdini, an annotation as-
sistant for ESC/Java. In Formal Methods Europe, 2001.

[20] D. Giannakopoulou, C. Păsăreanu, and H. Barringer. As-
sumption generation for software component verification. In
IEEE International Symposium on Automated Software En-
gineering, pages 3–12, 2002.

[21] A. Gurfinkel, B. Devereux, and M. Chechik. Model explo-
ration with temporal logic query checking. In Symposium on
the Foundations of Software Engineering. ACM Press, 2002.

[22] R. J. Hall. Feature combination and interaction detection via
foreground/background models. In Feature Interactions in
Telecommunications Systems. IOS Press, 1998.

[23] R. J. Hall. Feature interactions in electronic mail. In Fea-
ture Interactions in Telecommunications Systems. IOS Press,
2000.

[24] M. Jackson and P. Zave. Distributed feature composi-
tion: A virtual architecture for telecommunications services.
IEEE Transactions on Software Engineering, 24(10):831–
847, Oct. 1998.

[25] D. O. Keck and P. J. Kuehn. The feature and service in-
teraction problem in telecommunications systems: A survey.
IEEE Transactions on Software Engineering, 24(10):779–
796, Oct. 1998.

[26] G. A. Kildall. A unified approach to global program opti-
mization. In ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 194–206, 1973.

[27] O. Kupferman, M. Vardi, and P. Wolper. Module check-
ing. In International Conference on Computer-Aided Veri-
fication, LNCS number 1102. Springer-Verlag, 1998.

[28] K. Laster and O. Grumberg. Modular model checking of
software. In Conference on Tools and Algorithms for the
Construction and A nalysis of Systems, 1998.

[29] H. C. Li, S. Krishnamurthi, and K. Fisler. Modular verifica-
tion of open features through three-valued model checking.
Automated Software Engineering: An International Journal,
2003.

[30] H. Ossher and P. Tarr. Multi-dimensional separation of con-
cerns in hyperspace. Technical Report RC 21452(96717),
IBM, Apr. 1999.

[31] C. Prehofer. Feature-oriented programming: A fresh look at
objects. In European Conference on Object-Oriented Pro-
gramming, LNCS number 1241. Springer-Verlag, 1997.

[32] R. H. Reussner and H. W. Schmidt. Using parameterised
contracts to predict properties of component based software
architectures. In ICSE Workshop on Component-Based Soft-
ware Engineering, Apr. 2002.

[33] M. Shaw and D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice-Hall, 1996.

[34] C. R. Turner, A. Fuggetta, L. Lavazza, and A. L. Wolf. A
conceptual basis for feature engineering. Journal of Systems
and Software, 49(1):3–15, Dec. 1999.

10


