
Modeling Web-Based Dialog Flows for Automatic Dialog Control

Matthias Book, Volker Gruhn
Chair of Applied Telematics / e-Business, Dept. of Computer Science, University of Leipzig

Klostergasse 3, 04109 Leipzig, Germany; Phone: +49-341-97-32330, Fax: +49-341-97-32339
{book, gruhn}@ebus.informatik.uni-leipzig.de

Abstract

In web-based applications, the dialog control logic is of-
ten hidden in or entwined with the presentation and/or ap-
plication logic, even if the latter tiers are well-separated.
This makes it difficult to control complex dialog structures
like nested dialogs, and to reconcile the device-independent
business logic with the device-specific interaction patterns
required by different clients’ I/O capabilities. To avoid con-
tinuous re-implementation of the dialog control logic, we
present a Dialog Control Framework that is separate from
the presentation and business tiers, and manages arbitrar-
ily nested dialog flows on different presentation channels.
The framework relies on dialog specifications developed us-
ing the Dialog Flow Notation, which are translated into
an object-oriented dialog flow model for efficient run-time
lookups. This way, the framework automates the dialog
control aspect of web-based application development and
leaves only the tasks of implementing the business logic, de-
signing the hypertext pages, and specifying the dialog flow
to the developer.

1. Introduction

Over the past years, business processes have become in-
creasingly distributed in character and recently even begun
to exhibit mobile aspects, especially in application areas
such as field sales forces, logistics infrastructure, etc. To-
day, users demand flexible access to services — ideally, any
application should be available on any device, anywhere,
anytime [19]. Since economic considerations forbid imple-
menting applications individually for every kind of device,
and mobile devices typically have strict energy, memory, in-
put and output limitations [12], the users’ demands can vir-
tually only be fulfilled by pursuing a thin-client approach
[18]. Web-based applications seem to be ideal implementa-
tions of this concept, since the complete business logic re-
sides on a central server, while the user interface (UI) con-

sists entirely of web pages or similar renderings on client
devices such as desktop PCs, PDAs, mobile phones etc. [8]

However, the I/O capabilities of these devices range
widely, and characteristics like screen size do not only im-
pact the page layout, but also affect how users work with
an application [4]: A dialog that may be completed in a sin-
gle step on a desktop browser may have to be broken up
into multiple interaction steps on a mobile device whose
small screen cannot accommodate large forms. However,
the server-side business logic should remain independent
of such client-side specifics. This obviously calls for sep-
arating the device-specific presentation from the device-
independent business logic — however, as we will show in
section 2, that is not as trivial as it sounds since the dia-
log control logic tends to get mixed up with either one of
those tiers.

Another challenge when developing and working with
web-based instead of window-based UIs is induced by the
page-based interface paradigm [21]: In window-based ap-
plications, any window can spawn “child windows”, and
the completion of a dialog in a child window returns the
user to the dialog in the parent window. Users can rely
on this predictable behavior that reinforces their concep-
tual model and thus increases applications’ usability [15]. In
web-based applications, however, the page-based presenta-
tion and the stateless request-response communication pro-
tocol complicate the control of the dialog structure: Since
the business logic cannot push data to the client, it can only
react passively to user actions (e.g. clicking on a link) in-
stead of actively initiating dialog steps (e.g. opening a new
window). Also, the Hypertext Transfer Protocol (HTTP)
only transports data, but does not maintain any state infor-
mation. Consequently, the application itself has to manage
the dialog state for each user session. While simple linear
and branched dialog structures can be implemented with ba-
sic session state management techniques, arbitrarily nested
dialogs require more complex dialog control logic to keep
track of users’ dialog state on the server. To avoid this effort,
most of today’s web-based applications do not offer nested
dialogs. Instead, users have to navigate between parent and

child dialogs manually (if such a hierarchical relationship
is distinguishable at all). However, this does not conform to
the conceptual model of nested dialogs that users have long
established through window-based applications — a viola-
tion of the ISO dialog principles of controllability and con-
formity with user expectations [1] that imposes a high cog-
nitive and memory load on the user and thus reduces web-
based applications’ usability.

Since these issues of device-dependent interaction pat-
terns and nestable dialogs are independent of specific ap-
plications, they should be addressed by generic solutions.
We therefore present the architecture of a Dialog Control
Framework capable of managing complex, nested dialog
flows on different devices (section 2). We also introduce a
graphical Dialog Flow Notation (section 3) for the specifica-
tion of such flows, and finally show how they can be mod-
eled in a way that allows the framework to interpret them
efficiently (section 4). We hypothesize that the use of these
tools will increase the efficiency of software development
processes for web-based applications, as well as their us-
ability.

2. Dialog Control Framework

Web-based applications are usually designed according
to the Model-View-Controller (MVC) paradigm [13], which
suggests the separation of user interface, business logic and
control logic. While user interface and business logic can
be distinguished quite naturally (“what the user sees” vs.
“what the system does”), the distinction between business
logic and dialog control logic is much more subtle (“what
the system does” vs. “what it should do next, based on the
user’s input”). Therefore, it is easy to mix up the implemen-
tation of application and dialog control logic, even if both
are separated well from the presentation logic.

For example, in the Apache Jakarta Struts framework [2],
the dialog flow is controlled by so-called actions. They im-
plement the application logic and also decide where to for-

Client

Controller

ModelView

1. R
equest

2. Dispatch

3. U
pdate

4. Command

5. F
orw

ard

6. Extract

7. Response

Application
Logic

Dialog
Control logic
& Flow Spec

Figure 1. Coarse architecture of the Struts
framework

ward a request, while the controller just executes that for-
ward command. As indicated by the shading in Fig. 1, the
dialog control logic is distributed over all actions in this ap-
proach, i.e. the dialog flow is not specified outside the busi-
ness logic, but actually implemented in the Java code of the
actions. This allows the actions to make only relatively iso-
lated dialog flow decisions, and hampers the implementa-
tion of more complex dialog structures with constructs like
nested dialog modules. To raise the actions’ awareness of
the “big picture” and enable them to control more com-
plex constructs, still more control logic would have to be
implemented in them, exacerbating the problem. Also, the
hard-coded decentralized implementation of the dialog con-
trol logic is relatively inflexible, almost unsuitable for reuse
and hard to maintain. Finally, achieving device indepen-
dence would require additional effort and possibly redun-
dant work: Since the dialog flow depends on the presenta-
tion channel, while the business logic should not, their close
coupling prevents the reuse of actions on multiple presenta-
tion channels. Instead, each channel would require its own
set of actions to implement the individual dialog flow for
the respective devices.

In contrast, the Dialog Control Framework (DCF) pre-
sented in this paper features a very strict implementation of
the MVC pattern, completely separating not only the busi-
ness logic and UI, but also the dialog flow specification and
dialog control logic: The controller decides where to for-
ward requests by using a central dialog flow model to look
up the receivers of events generated by masks and actions.

As the coarse architecture (Fig. 2) shows, the actions are
relatively lightweight here since they contain only calls to
the business logic, while all dialog control logic has been
moved to the dialog controller. This controller does not re-
ceive requests from the clients directly anymore. Instead, on
each presentation channel, it receives events that have been
extracted from the requests by channel servlets. The dialog
controller looks up the receivers of these events in the di-
alog flow model — a collection of objects representing di-
alog elements that hold references to each other to mirror
the dialog flow (section 4). This dialog flow model is built
upon initialization of the framework by parsing documents
containing the dialog flow specification in an XML-based
format (the shaded parts of the diagram emphasize that the
dialog control logic and the flow specification are decou-
pled from the business logic and from each other in this ap-
proach). Depending on the receiver that the controller re-
trieved from the model for an event, it may call an action,
forward the request to a mask, or nest or terminate dialog
compounds (a construct introduced below). The latter op-
erations are performed on compound stacks that store the
nested compounds constituting the state of the dialog sys-
tem for each user.

This centralized approach to dialog control has three ad-

2. Lookup

6. Lookup

Client

Dialog
Controller

Model
Dialog
Mask

3. Dispatch

4. U
pdate

5. Result

7. F
orw

ard

8. Extract

Action

Dialog Flow Model

Channel
Servlet

1. Request

Dialog
Flows

Document

Dialog
Elements
Document

Dialog Graph DiagramsDialog Flow Specification

9. Response

translationimport

Compound
Stack

Figure 2. Coarse architecture of the DCF

vantages over the previously discussed decentralized archi-
tecture: Firstly, the strict separation between business logic
implementation, UI design, dialog flow specification and
dialog control logic enables a high degree of flexibility,
reusability and maintainability for the components of all
four tiers. Secondly, due to this clean separation, device-
independent applications can be built with minimal redun-
dancy: Only the dialog masks and the dialog flow specifi-
cations need to be specified for the different presentation
channels, while the business logic is implemented device-
independently only once and the dialog control logic is pro-
vided by the framework. Finally, since the central dialog
control logic is aware of the whole dialog flow specified
for each channel (it knows the “big picture”), it can man-
age complex dialog constructs.

The framework was implemented using Java 2 Enterprise
Edition. To build an application with it, developers only
need to provide simple Java classes implementing the ac-
tions, JavaServer Pages implementing the dialog masks, and
documents containing the dialog flow specification. Writ-
ten in the XML-based Dialog Flow Specification Language
(DFSL), these documents are machine-readable representa-
tions of dialog graph diagrams drawn in the Dialog Flow
Notation presented next. Since these deliverables are com-
pletely application-specific, the framework is suitable for
black box reuse.

3. Dialog Flow Notation

The Dialog Flow Notation (DFN) represents the dialog
flow within an application as a directed graph of states con-
nected by transitions. To define the concept of a “dialog
flow” and develop the notation elements, we first exam-

ine the client-server communication taking place in each
request-response cycle of a hypertext-based application:

As Fig. 3 shows, a pageA’ displayed on the client is ren-
dered from source code (e.g. HTML) that was first gener-
ated by an entityA (e.g. a JavaServer Page) on the server
and then transmitted to the client. When the user follows
a link or submits a form on this page, the resulting dataa
is transmitted to the server. The application logic may now
process the data in a number of steps (here:1 and2), which
each generate data (b andc) that is processed in the next
step. Finally, the source code for the following page is gen-
erated (B), transmitted to the client and rendered there (B’).
Alternatively, user-submitted data (such asd) may not re-
quire any application logic processing, but directly lead to
the generation and rendering of a new page (C andC’). We
call the server activity happening between the submission
of a request and the receipt of a response by the client adi-
alog step, and refer to all possible sequences of dialog steps
as an application’sdialog flow.

Looking at the communication model in Fig. 3, we re-
alize that the client-server communication and thus the dis-

A' B' C'

A

a

1 2
b

B
c

C

d

Server

Client

Dialog Step

Figure 3. Request-response cycles in HTTP

tinction between generating (A) and rendering pages (A’) is
irrelevant for the purpose of modeling dialog flows: When
specifying how the user interacts with the application logic
via the UI pages, the dialog flow designer does not need
to know about technical details such as pages’ source code
being generated on the server and transmitted to the client
prior to rendering. The DFN therefore only specifies the or-
der of the UI pages and processing steps, and the data ex-
changed between them. It models the dialog flow as a tran-
sition network, i.e. a directed graph of states connected by
transitions called adialog graph. The notation refers to the
transitions aseventsand to the states asdialog elements,
discerning atomic and compound elements.

3.1. Basic dialog elements and events

Hypertext pages (symbolized by dog-eared sheets and
referred to by the more generic termmaskshere) and ap-
plication logic operations (symbolized by circles and called
actions from now on) constitute theatomic dialog ele-
ments. As illustrated in the communication model in Fig.
3, some dialog sequences may contain multiple consecutive
masks or actions, so dialog graphs do not need to be bipar-
tite. Every dialog element can generate and receive multiple
events, enabling the developer to specify much more com-
plex dialog graphs than the linear succession of elements
shown above. Which element will receive an event depends
both on the event and the generating element (e.g., an event
emay be received by action3 if it was generated by maskD,
but be received by action4 if generated by maskE). Events
can carry parameters, i.e. application-specific information
such as form input, and thus facilitate communication be-
tween dialog elements.

Theoretically, the complete dialog flow of an applica-
tion could be described using only atomic elements. How-
ever, the resulting specification would be too complicated to
understand, and the “flat” structure does not support reuse
of often-needed dialog graphs. The DFN therefore provides
compound dialog elements(compounds) which encapsu-
late dialog graphs and allow the nesting of dialog struc-
tures: A compound’s interior dialog graph can contain sub-
compounds, and the compound itself can be embedded in
the exterior dialog graphs of super-compounds. We discern
two types of compound dialog elements:Dialog modules
(symbolized by boxes with rounded corners) contain an in-
terior dialog graph with one entry point and one or more exit
points, whiledialog containers(symbolized by boxes with
right-angled corners) contain an interior dialog graph with
one entry point, but no exit points. At the top of the nest-
ing hierarchy is anapplication container (symbolized by
a double-line box) that is entered when the client sends the
initial request to the server running the application, and can
only be exited by leaving the site.

Login
check
name,

passwd

submit

incorrect

has
admin
rights?

correct

check
login
status

not yet
logged

in

 no

already logged in

mark
user as
logged

in

done

User Authorization

create new
account

register

 yes

is admin

is user

cancel

Figure 4. User Authorization dialog module

We will introduce the features of dialog modules using
theUser Authorizationmodule in Fig. 4 as an example. This
module checks if the user is already logged in and shows
a Login mask to prompt for his user name and password,
if necessary. If the user’s credentials are correct, the mod-
ule marks him as logged in, checks his access rights and
terminates, notifying the super-compound of the user’s sta-
tus. If the user does not yet have an account, he can register
using the embeddedcreate new accountsub-module. Note
that by splitting the application logic into fine-grained oper-
ations instead of implementing them all together, the mod-
ule can react flexibly to different situations, like bypassing
the credential check when the user is already logged in.

When a compound receives an event from the exterior
dialog graph that it is embedded in, traversal of its interior
dialog graph starts with theinitial event. When the inte-
rior dialog graph terminates, it generates a terminal event
that is propagated to the super-compound and continues the
traversal of the exterior dialog graph. Depending on the se-
mantics of the termination, developers can choose between
three kinds of terminal events (Fig. 5).

Regular terminal eventsare intended to communicate
application-specific information to the terminating mod-
ule’s exterior dialog graph, such as the result of an opera-
tion or decision (for example, theUser Authorizationmod-
ule generates anis useror is adminterminal event, depend-
ing on the user’s rights). Often, however, modules do not
need to notify their calling super-compound about some
application-specific state, but should simply indicate if they
completed their task successfully or not. The DFN provides
thedoneandcancelledterminal eventsto model these sit-
uations (for example, thecreate new accountmodule may
terminate with adoneor cancelledevent, depending on the

Event Name

Event Name

Event type

Initial event

Regular terminal event

Done terminal event

Cancelled terminal event

Interior dialog
graph symbol

Exterior dialog
graph symbol

n/a

Abort event n/a

Figure 5. Event types and notation symbols

success of the registration process). In contrast to regular
terminal events,done and cancelledevents are unnamed
and cannot carry parameters. Their universal, application-
independent semantics enable the dialog control logic to
handle them automatically in situations where a receiver
could not be specified at design-time, but needs to be identi-
fied at run-time. This is often the case when using the com-
pound or common events described next.

3.2. Advanced dialog constructs

Complex dialog structures will usually contain a certain
amount of redundancy, since some dialog elements may be
linked from many other elements in the application. If we
had to specify all the respective events explicitly, our dialog
graph diagrams would soon become cluttered with redun-
dant information. To counter the combinatory explosion of
transitions that often plagues state machines, Harel’s State-
charts [10] provide the construct of a transition leading from
a contour to a state. The DFN uses a similar construct, al-
beit adapted for dialog flow specification: A so-calledcom-
pound event, symbolized in dialog graph diagrams by an
arrow leading from the compound’s contour to a certain el-
ement, indicates that this event may be generated by every
element in the compound.

As an example, consider the dialog graph of a simple on-
line shop in Fig. 6. The shop’s homepage, list of items in
each category, detailed description of each item, shopping
cart and checkout process shall be linked from every mask
in the system. If all events connecting these elements had
been specified explicitly, a tangled event web would have
been the result. Using compound events, however, we can
express the same relationships in a much clearer diagram.

The scope of compound events only encompasses the
compound that they are specified in, but not its super- or
sub-compounds. For example, while theshow itemevent
leads to theItem Detailsmask from any mask in theShop
container, such a connection does not exist for any masks in-
side theCheckoutsub-module. In some situations, however,

it may actually be desirable that certain events can be han-
dled even if their receiver is not specified in the compound
that they are generated in — for example, thecreate new
accountmodule may be reachable from anywhere within
a web-based application, not just from theLogin mask. To
model these relationships, the DFN provides thecommon
event. Similar to the compound event, it is symbolized by
an arrow leading away from the compound’s contour, but
outward to another compound element (and only to a com-
pound — it may not lead to an atomic element or into a
dialog graph). This so-calledcommon compoundis then
nested into the user’s dialog sequence wherever he gener-
ates the respective common event, independently of his po-
sition in the dialog flow.

As an example, consider thePortal application container
in Fig. 7 (the application container, symbolized by a double-
line box, is the root of the compounds’ nesting hierarchy,
where every user’s dialog sequence starts when he enters
the application). The parts of this portal system are mod-
eled as common compounds so they can be reached from
anywhere within the application.

Compound and common events provide a mechanism for
entering compounds from different places in a dialog flow
without having to specify the respective events explicitly.
For usability reasons, we would want to return the user to
the mask from which he had entered the compound when

Shop

User
Authorization

Inventory
Administration

is admin

Shop
Home

is user

home
Checkout

check
out

Category
Items

Item
Details

show
category show item

add to
cart

Shopping
Cart

add to cart cart updated show cart

save
items in

cart?

save
cart

no saved

yes

resum
e

Figure 6. Dialog graph of Shop container

Portal

no

Umbrella Site

Shop

Forum

Umbrella Site

user
cookie

present?

create new
account

read
cookie
data

yes

us
er

id

en
tif

ie
d

enter
portal

enter
shop

enter
forum

register

Figure 7. Dialog graph of Portal application
container

it terminates (in the same way that window-based applica-
tions return the focus to the parent window after the user
closed a child window). However, since we do not know
at specification time where to return the user, we cannot
specify the receiver of the terminal event. The DCF intro-
duced in section 2 solves this apparent dilemma by using
thedoneandcancelledevents’ application-independent se-
mantics described above: If the framework intercepts adone
or cancelledevent without a specified receiver, the so-called
return mechanismautomatically leads the event to the dia-
log mask from which the terminated module was activated,
creating the familiar “nesting” effect for the user.

This mechanism works for modules, which by definition
terminate eventually. However, common containers pose
more of a challenge: Since they do not terminate by them-
selves, and nesting them deeper and deeper into each other
as the user navigates between them would gradually lock
up memory, the only option is to abort a common con-
tainer before another one can be activated at the same nest-
ing level. For example, if the user is currently in theShop
container and generates anenter portalevent, traversal of
theShopcontainer’s interior dialog graph (and of all com-
pounds nested into it at the time) has to be aborted before
theUmbrella Sitecontainer’s initial event can be handled.

In order to abort a compound in a controlled way, a spe-
cial abort dialog graph can be specified for it, which might
ask the user if he really wants to abort (also giving him a
chance to resume the original dialog graph where he left
off), or if he wants to save any unsaved data before abort-
ing. Traversal of the abort dialog graph, which may not con-
tain any sub-compounds and must not be connected to the
compound’s regular dialog graph, starts at theabort event
(see symbol in Fig. 5). For example, in theShopcontainer’s
abort dialog graph (at the bottom of Fig. 6), the system
prompts the user if he wants to save the items in his cart be-
fore leaving the shop, or if he wants to resume shopping.

In case the user decides not to switch containers, he can
generate aresume event(symbolized in dialog graph di-
agrams by an arrow leading towards the compound’s con-
tour), which invokes the framework’sresume mechanism.
Using an algorithm similar to the return mechanism, it leads
the user back to the dialog mask in the regular dialog graph
that was displayed before the abort sequence started.

3.3. Presentation channels

To specify different dialog flows for different devices,
the flows for each channel are specified in separate com-
pounds withchannel labelsadded after the compounds’
names. For example, Fig. 8 specifies the dialog flows for
aCheckoutmodule on the HTML and WML channel. Note
that while the channels employ different dialog masks ac-
cording to the clients’ input/output capabilities, they use the
same actions for processing the users’ input. This enables
developers to implement the device-independent applica-
tion logic only once and then reuse it on multiple channels.
In addition to specifying presentation channel-specific dia-
log graphs for different devices, it is also possible to specify
generic, presentation channel-independent aspects of the di-
alog flow only once and reuse them on multiple channels in
order to reduce redundant specifications.

Checkout [WML]

Enter
address

check
address

submit

incorrect
Enter

shipping
data

correct check
shipping

data

submit

incorrect
Enter
billing
data

correct check
billing
data

submit

incorrect
correct place

order

ok

Checkout [HTML]

Enter
address,
shipping,

billing

check
address

submit

incorrect
correct check

shipping
data

correct check
billing
data

correct place
order

ok

incorrect
incorrect

cancel

cancel

Figure 8. Checkout module on HTML and
WML presentation channel

4. Dialog Flow Model

For a smooth transition from specification to implemen-
tation, the graphical dialog flow specifications are trans-
lated into machine-readable documents written in the XML-
based DFSL (DFSL). As described in section 2, the dialog
controller must constantly look up the receivers of certain
events generated by certain elements at run-time of the ap-
plication. Since it would be very time and memory consum-
ing to read the DFSL documents in each dialog step, parse
the required parts and instantiate the respective dialog ele-
ments, the documents are transformed into an object repre-
sentation upon initialization of the framework. The frame-
work then works with this object representation — thedia-

Figure 9. Dialog elements class diagram

log flow model— directly without costly and cumbersome
conversions.

4.1. Dialog elements

The dialog flow model is a set of objects (representing
the application’s dialog elements) that maintain a network
of references to each other in order to specify which el-
ements generate and receive which events. In an excerpt
from the framework’s class diagramm, Fig. 9 shows the in-
heritance structure of compound dialog elements. In anal-
ogy to the DFN, aDialogElement can either be a
Compound or an Atom. We discern three types of com-
pounds: TheAppContainer , which cannot be nested into
any other compound, and theNestableCompound types
of Module s andContainer s.

We do not discuss atomic dialog elements fur-
ther here since their representation in the dialog flow
model is comparatively trivial. TheCompound class, how-
ever, is quite a bit more complex than the other classes
in the model. It contains a compound’s regular dia-
log graph (traversed when the compound is not abort-
ing) in the form of two RegularDialogGraph s:
The specificRegularGraph contains the
presentation channel-specific parts of the dialog

graph, while the genericRegularGraph con-
tains the device-independent parts of the graph.
In addition, NestableCompound s contain a
specificAbortGraph and genericAbortGraph
which together contain the compound’s complete abort di-
alog graph. Read access to this model is provided by the
findRecvElement andfindCommonElement meth-
ods that return the receiving elements for the given
events.

4.2. Dialog graphs

RegularDialogGraph s and AbortDialogGraph s
are sub-classes of the abstractDialogGraph class, as
shown in the class diagram excerpt in Fig. 10. They con-
tain the actual dialog graphs, modeled by event tables
which hold references to the dialog elements that re-
ceive the events that may be generated in a compound: The
maskEventTables and actionEventTables con-
tain entries for each mask and action in aDialogGraph .
Each entry is anEventTable , which in turn contains en-
tries for each event generated by that element. Each of
those entries, finally, contains a reference to the receiv-
ing DialogElement . Fig. 11 visualizes the structure of
these nested tables, with key-value-relationships in hash ta-
ble entries being visualized by two columns in a box.

Since regular dialog graphs may not only con-

Figure 10. Dialog graphs class diagram

Dialog Graph

Mask Event Tables

Mask A
Event a

Event b

...

...

Receiving Element

Receiving Element

Mask B ...

Action Event Tables

Action 1
Event c

Event d

...

...

Receiving Element

Receiving Element

Action 2 ...

Figure 11. Event table structure for dialog
graphs

tain masks and actions, but also modules, the
RegularDialogGraph sub-class adds the
moduleEventTables attribute which contains the
tables for events generated by modules. As terminat-
ing modules may generatedoneandcancelledevents in ad-
dition to regular events, theModuleEventTable
class extends theEventTable class to add the
doneEventRecv and cancelledEventRecv at-
tributes, which store the receivers of the respective events.
Besides modules, regular dialog graphs also contain an ini-
tial event, whose receiving dialog element is stored di-
rectly in the initialEventRecv attribute. They may
also contain compound and common events, whose re-
ceivers are stored in thecompoundEventRecvs and
commonEventRecvs hash tables. The complete event ta-
ble structure forRegularDialogGraph s is visualized
in Fig. 12.

Nestable compounds, finally, may not only contain a reg-
ular dialog graph, but also an abort dialog graph which is
traversed upon abortion of the compound. Since this dia-
log graph may not contain any modules, compound or com-
mon events, theAbortDialogGraph sub-class mod-
eling it only adds the abortEventRecv attribute
which contains a reference to the dialog element re-
ceiving the abort event. The mask and action event ta-
bles for the abort dialog graph are inherited from the
DialogGraph super-class, as visualized in Fig. 12. Read

Regular Dialog Graph

Mask Event Tables

Module Event Tables

Module mod1
Event e

Event f

Action Event Tables

...

Compound Event Receivers

...

...

...

Initial Event Receiver

Abort Dialog Graph

Mask Event Tables

Action Event Tables

...

...

Receiving Element

Receiving Element

Module mod2 ...

Common Event Receivers

Done event Receiving Element

Cancelled event Receiving Element

Event g

Event h

...

Receiving Element

Receiving Element

Event i

Event j

...

Receiving Element

Receiving Element

Receiving Element

Abort Event Receiver Receiving Element

Figure 12. Event table structure for regular
and abort dialog graphs

access to the event tables is provided by the classes’ vari-
ousget...EventRecv methods which are called by the
compounds’findRecvElement methods.

When a user is working with the application, the
Module , Container and AppContainer ob-
jects that he encounters are stored on his compound stack
(Fig. 2) in order to keep track of the nested dialog struc-
ture and allow direct access to the dialog graph of the
currently traversed compound.

5. Related Work

Most tools offering dialog control implementation sup-
port for web-based applications follow the MVC design pat-
tern to facilitate easier dialog control. The Apache Jakarta
Project’s Struts framework [2] is the most popular solution
today, however, it forces developers to combine business
logic and dialog control logic in the actions (as discussed
in section 2), which renders the dialog control implemen-
tation cumbersome and inflexible. While the concept of an
application-independent “screen flow manager” that deter-
mines the next view is suggested in the Java BluePrints [17],
no framework seems to exist yet that employs this pattern to
implement complex dialog constructs such as the arbitrar-
ily nestable, abortable and resumable dialog modules and
device-specific dialog flows offered by the DCF.

The challenges posed by different devices’ interaction
patterns are addressed in the Sisl (Several Interfaces, Sin-
gle Logic) approach [3]. Its “service monitor” can process
unordered or incomplete input from a wide range of client
devices. However, since it uses acyclic graphs to model di-
alogs, it is more suitable for simple linear and branched di-
alog structures than for highly interactive applications with
nested and cyclic dialogs. Similarly, the World Wide Web
Consortium’s XForms initiative [20] is also concerned with
the device-independent specification of forms. However, it
is mostly concerned with the specification of widgets (such
as input fields) on web pages and does not allow the speci-
fication of nested dialog sequences.

For the specification of user interfaces, a number of no-
tations have been proposed over time. However, ap-
proaches that were explicitly developed for web-based sys-
tems mostly focus on data-intensive information systems,
but not interaction-intensive applications [6]: For exam-
ple, the RMM development process [11] allows the defini-
tion of navigable relationships between data entities, and
the OOHDM [16] process provides classes like node, link
and index to represent different forms of navigation; how-
ever, the resulting structures remain “flat” and cannot be
nested arbitrarily. The same is true for the HDM-lite no-
tation used by the Autoweb tool [7], which supports the
automatic generation of database schemas and applica-
tion pages from a conceptual model. Finally, while the

language WebML [5] is capable of modeling simple dy-
namic features of a data-intensive web application by
providing operation units for creating, deleting and modi-
fying entities, it does not support more complex structures
such as modular, nestable dialog sequences.

While the concept of modeling dialog systems as state-
based systems is not new [9] and generic notations for this
already exist (e.g. Statecharts [10]), we chose not to use any
generic notation because expressing the particularities of
web-based dialog flows (e.g. different types of dialog ele-
ments, compounds and events) in those would be cumber-
some in practice. Also, we wanted to provide the DFN with
constructive instead of mere descriptive power, enabling de-
velopers to use complex constructs like the abort/resume
mechanism intuitively, without having to spell out their de-
tails in a generic notation. In consequence, the notation con-
tains a number of elements that may seem like “syntactic
sugar” at first glance, but should actually strengthen the no-
tation and framework’s applicability to common challenges
that web engineers face in real-world projects.

6. Conclusions

By comparing the characteristics of window- and web-
based user interfaces, we found that the latter’s usabil-
ity suffers from a lack of support for nested dialogs and
the difficulty of reconciling the device-independent busi-
ness logic with the device-dependent interaction patterns
required by different clients’ I/O capabilities. In order to
avoid re-implementing the complex dialog control logic in
every application, we presented a Dialog Control Frame-
work (section 2) for automatic dialog control in web-based
applications. To control users’ interaction with an applica-
tion, the framework requires a specification of the applica-
tion’s dialog flow. This specification is first developed in
the graphical Dialog Flow Notation (section 3) and then
translated into the XML-based Dialog Flow Specification
Language. After parsing these specifications, the framework
creates an object-oriented dialog flow model (section 4) that
represents the dialog structure as a graph, enabling efficient
access to all dialog elements.

From a practical perspective, a weak point of the nota-
tion may currently be the fine granularity of actions that is
required to reuse them flexibly in dialog graphs on differ-
ent presentation channels (this especially concerns actions
responsible for processing user input submitted through
forms): The finer the actions are grained, the easier it is
to adapt to different interaction patterns — however, very
fine granularity also results in quite high specification, im-
plementation and performance overhead. When specifying
a dialog flow, the developer therefore needs to find a bal-
ance between the desired flexibility and the required granu-
larity. Research on solutions to this dilemma is in progress

— a possible approach seems to be abstracting from con-
crete masks and actions, and just letting the developer spec-
ify which data the user shall be prompted for. The frame-
work would then have to generate a suitable dialog flow for
obtaining and checking the user input automatically based
on the specifications.

While the implementation of the framework and the
structure of the object-oriented dialog flow model already
define operational semantics for the notation, a formal def-
inition of the DFN’s semantics must obviously be estab-
lished as a sound basis for future work. This can be achieved
by showing that all DFN constructs can also be expressed
by means of a more generic formalism such as Statecharts
or Petri nets (even if that formal representation would not
be suitable for practical use). We are currently working on
the definition of such a formal basis that will enable us
to reason about the specifications produced with the DFN.
Also, to enable an automatic transition from the graphical to
the machine-readable dialog flow specification, we are cur-
rently defining a dialog flow metamodel based on the Ob-
ject Modeling Groups Meta-Object Facility [14], and devel-
oping a plug-in for the open source Eclipse IDE to model
dialog flows graphically in the DFN and create DFSL doc-
uments out of them automatically by applying XSLT style
sheets to their XMI representation.

More empiric evidence is still needed to see how the Di-
alog Control Framework and Dialog Flow Notation can be
integrated into the software development process for web-
based applications. To validate the suitability of both tools,
a small-scale demo application employing all dialog con-
trol features was already developed at the Chair of Applied
Telematics’ Mobile Technology Lab. We are currently striv-
ing to gain more experience from larger projects, which
should yield insights into the applicability of the notation
and framework to certain application domains and client
devices, and enable us to evaluate the increase in develop-
ment efficiency and application usability gained by the use
of both tools.

7. Acknowledgments

The Chair of Applied Telematics/e-Business at the Uni-
versity of Leipzig is endowed by Deutsche Telekom AG.

References

[1] Ergonomic requirements for office work with visual display
terminals (VDTs) — Part 10: Dialogue principles. Techni-
cal Report ISO 9241-10, International Organization for Stan-
dardization, 1996.

[2] Apache Jakarta Project. Struts.
http://jakarta.apache.org/struts/.

[3] T. Ball, C. Colby, and P. Danielsen. Sisl: Several interfaces,
single logic. International Journal of Speech Technology,
3(2):91–106, 2000.

[4] M. Butler, F. Giannetti, R. Gimson, and T. Wiley. Device
independence and the web.IEEE Computing, 6(5):81–86,
Sep–Oct 2002.

[5] S. Ceri, P. Fraternali, and A. Bongio. Web modeling lan-
guage (WebML): A modeling language for designing web
sites.Computer Networks, 33:137–157, Jun 1995.

[6] P. Fraternali. Tools and approaches for developing data-
intensive web applications: A survey.ACM Computing Sur-
veys, 31(3):227–263, Sep 1999.

[7] P. Fraternali and P. Paolini. Model-driven development of
web applications: The Autoweb system.ACM Transactions
on Information Systems, 28(4):323–382, Oct 2000.

[8] M. Gaedke, M. Beigl, H. Gellersen, and C. Segor. Web con-
tent delivery to heterogeneous mobile platforms.Advances
in Database Technologies, Lecture Notes in Computer Sci-
ence, 1552, 1998.

[9] M. Green. A survey of three dialogue models.ACM Trans-
actions on Graphics, 5(3):244–275, Jul 1986.

[10] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, 8(3):231–274,
1987.

[11] T. Isakowitz, E. Stohr, and P. Balasubramanian. RMM: a
methodology for structured hypermedia design.Communi-
cations of the ACM, 38(8):34–44, Aug 1995.

[12] J. Jing, A. Helal, and A. Elmagarmid. Client-server com-
puting in mobile environments.ACM Computing Surveys,
31(6):117–157, Jun 1999.

[13] G. Krasner. A cookbook for using the model-view-controller
user interface paradigm in Smalltalk.Journal of Object-
Oriented Programming, 1(3):26–49, 1988.

[14] Object Management Group. Meta-
object facility (MOF), v1.4.
http://www.omg.org/technology/documents/formal/mof.htm,
Apr 2002.

[15] J. Rice, A. Farquhar, P. Piernot, and T. Gruber. Using the
web instead of a window system. InProceedings of the ACM
Conference on Human Factors in Computing Systems (CHI
‘96), 1996.

[16] D. Schwabe and G. Rossi. The object-oriented hypermedia
design model.Communications of the ACM, 38(8):45–46,
Aug 1995.

[17] I. Singh, B. Stearns, and M. Johnson.Designing Enterprise
Applications with the J2EE Platform. Addison-Wesley, 2nd
edition, 2002.

[18] A. Sinha. Client-server computing.Communications of the
ACM, 35(7):77–98, Jul 1992.

[19] M. Weiser. Computer science issues in ubiquitous comput-
ing. Communications of the ACM, 36(7), Jul 1993.

[20] World Wide Web Consortium. XForms 1.0, W3C rec-
ommendation. http://www.w3.org/TR/2003/REC-xforms-
20031014/, Oct 2003.

[21] W. Zhao, D. Kearney, and G. Gioiosa. Architectures for web
based applications. In4th Australasian Workshop on Soft-
ware and Systems Architectures (AWSA 2002), 2002.

