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Abstract With the use of formal models comes the ability to auto-
matically generate specification based tests from the mod-
Model checking techniques can be successfully employecls. This capability may be used to generate large numbers
as a test case generation technique to generate tests fronof tests to use asonformance tests provide assurance that
formal models. The number of tests cases produced, howthe generated code is correct with respect to the specifica-
ever, is typically large for complex coverage criteria such as tion from which it was generated. This type of conformance
MCDC. Test-suite reduction can provide us with a smaller testing will most likely be required since it is unlikely that
set of test cases that preserve the original coverage—often aegulatory agencies will trust a complex code generation
dramatically smaller set. One potential drawback with test- tool. For example, we may generate test-suites that provide
suite reduction is that this might affect the quality of the test- MC/DC coverage of the formal model, execute the tests on
suite in terms of fault finding. Previous empirical studies the generated code, and show that the specification and code
provide conflicting evidence on this issue. To further inves- behave equivalently for this test-suite—an argument for the
tigate the problem and determine its effect when testing for-correctness of the translation that may be accepted by a reg-
mal models of software, we performed an experiment usingulatory agency.
a large case example of a Flight Guidance System, gener- The cost of generating, executing, storing, and maintain-
ated reduced test-suites for a variety of structural coverage ing these test-suites can be reduced throtggit-suite re-
criteria while preserving coverage, and recorded their fault duction techniquesTest-suite reduction aims to remove (or
finding effectiveness. Our results show that the size of thenot generate at all) test-cases from a test-suite in such a way
specification based test-suites can be dramatically reducedthat “redundant” test-cases are eliminated. For example, a
and that the fault detection of the reduced test-suites is ad-reduced test-suit€r may provide the same structural cov-
versely affected. In this report we describe our experiment, erage as a test-suifé with significantly fewer test-cases.
analyze the results, and discuss the implications for testingPrevious studies conducted on C code have shown that test-
based on formal specifications. suite reduction techniques significantly reduce the number
of test-cases in a test-suite while maintaining the structural
Keywords: specification-based testing, test reduction, coverage of the original suite [34, 35, 30, 24]. The effect
fault finding, model checkers, automated test generation  on thefault finding capability of the reduced test-suites is,
however, unclear and the studies show conflicting evidence.
Wonget al.[34, 35] found no significant effect in fault find-
ing ability between the full suites and the reduced suites. On
the other hand, Rothermet al.[30] and Jones and Harrold
In model-based development, the development effort is [24] showed that the reduced test-suites can be dramatically
centered around a formal description of the proposed soft-worse with respect to fault finding.
ware system. The main ideas behind model-based devel- To investigate the effect of test-suite reduction in the do-
opment is that through manual inspections, formal verifica- main of automatically generated conformance test-suites,
tion, and simulation and testing we convince ourselves (andwe conducted an experiment where we compared the test-
any regulatory agencies) that the software specification possuite size and fault finding capability of reduced test-suites
sesses desired properties. The implementation is then autogenerated to six different specification test-adequacy crite-
matically generated from this specification and, in theory, ria. As a system-under-test, we used a model of a pro-
little or no additional testing of the implementation is re- duction sized Flight Guidance System (FGS) provided by
quired. Rockwell Collins Inc. in which we seeded “representative”
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Our results show that one can dramatically reduce
our automatically generated conformance test-suites while
maintaining desired coverage. We also found that the fault inspecions
finding of these reduced test-suites was adversely affected,

Inspections Formal

and that the reduction is quite significant in the domain of  fomaaayes Specification Subsyster
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specification based testing. Although further studies are 2 megraton
needed, the results indicate that test-suite reduction may not

be an effective means of reducing testing effort—the cost in Implementation
terms of loss in fault finding capability is too high.

In the remainder of the paper we review relevant litera-
ture, describe our experimental set up, results obtained, and
draw conclusions from the results.

Figure 1. Specification Centered Develop-
ment Process.

the code to functional testing of the formal model. In ad-
2 Background and Related Work dition, there is a need to perform conformance testing to
assure that the generated code is behaviorally equivalent to
To put our current work in context it is necessary to pro- the specification—a task ideally suited for automatic test
vide information regarding related studies as well as the do-case generation from the formal specification. Test-suites
main in which we performed our work. We will briefly dis- generated for this purpose are the focus of our study.
cuss the approach to testing made possible when working
with formal models and automatic test case generators. We2 2 Test Cases and Model Checkers
will then cover the most closely related test-suite reduction
experiments and contrast them with the study presented in

. Model checkers build a finite state transition system and
this report.

exhaustively explore the reachable state space searching for
violations of the properties under investigation [9]. Should a
property violation be detected, the model checker will pro-
duce a counter-example illustrating how this violation can
As mentioned in the introduction, in the embedded sys- take place. In short, a counter-example is a sequence of in-
tems community, there is a trend towamsdel-based3, puts that will take the finite state model from its initial state
33] (or specification based) development. In model-basedto a state where the violation occurs.
development, the development effort is centered around a A model checker can be used to find test cases by for-
formal description of the proposed software system. For mulating a test criterion as a verification condition for the
validation and verification purposes, t@mal specifica-  model checker. For example, we may want to test a tran-
tion can then be subjected to various types of analysis, forsition (guarded with conditiod’) between stated and B
example, completeness and consistency analysis [19, 21]n the formal model. We can formulate a condition describ-
model checking [14, 6, 7, 22, 9], theorem proving [1, 2], ing a test case testing this transition—the sequence of in-
and test case generation [5, 13, 10, 4, 27, 23, 29]. Throughputs must take the model to stafe in state4, C must be
manual inspections, formal verification, and simulation and true, and the next state must e This is a property ex-
testing we convince ourselves (and any regulatory agen-pressible in the logics used in common model checkers, for
cies) that the software specification possesses desired propexample, the logic LTL. We can now challenge the model
erties. The implementation is then automatically generatedchecker to find a way of getting to such a state by negating
from this specification. There are currently several com- the property (saying that we assert that there is no such in-
mercial and research tools that attempt to provide theseput sequence) and start verification. We call such a property
capabiliies—commercial tools are, for example, Esterel a trap property[13]. The model checker will now search
and SCADE from Esterel Technologies, Statemate from i- for a counterexample demonstrating that this trap property
Logix [15], and SpecTRM from Safeware Engineering [26]; is, in fact, satisfiable; such a counterexample constitutes a
and examples of research tool are SCR [20], RSM[33], test case that will exercise the transition of interest. By re-
and Ptolemy [25]. peating this process for each transition in the formal model,
The capabilities of model-based development allows uswe use the model checker to automatically derive test se-
to follow a process outlined in Figure 1. The testing effort quences that will give us transition coverage of the model.
has in this process been largely moved from unit testing of This general approach can be used to generate tests for a

2.1 Model-Based Development



wide variety of structural coverage criteria, such as all state RSML~¢.
variables have taken on every value, and all decisions in the Second, we are addressing a wide spectrum of coverage
model have evaluated to both true and false, etc. criteria ranging from the very weak, for example, transi-
In a previous project, we developed a framework where tion coverage, to the very strong, for example MCDC. The
one can generate test suites to satisfy a wide variety ofprevious experiments addressed either rather weak criteria
specification-coverage criteria [29, 18]. This is the tech- such as block-coverage [35] or used test-suites that did not
nique and tools infrastructure we have used to generate thdully provide the desired strong coverage [24]. This issue
test suites used in our experiment. will be further addressed in the discussion of our results.
These differences makes a direct comparison of our re-
2.3 Previous Test-Reduction Experiments sults with related work difficult, but our findings seem to re-
inforce the observations in the Rotherneg¢lal, and Jones

Several studies have investigated the effect of test-set red nd Harrold studies; although test-suite reduction can dra-

i . 2 - matically reduce the size of a test-suite without affecting
duction on the size and fault finding capability of a test-set. : . .
. coverage, test-suite reduction has a detrimental effect on the
In an early study, Wongt al. address the question of the ef-

fect on fault detection of reducing the size of a test set while test-suite’s fault finding capability.
holding coverage constant [34, 35]. Their experiments were )
carried out over a set of commonly used UNIX utilities im- 3 The Experiment
plemented in C. These programs were manually seeded with
faults, producing variant programs each of which contained  To investigate the relationship between test reduction
a single fault. They randomly generated a large collection and fault finding capability in the domain of model based
of test sets that achieved block and all-uses data flow covertests, we designed our experiment to test two hypotheses:
age for each subject program. For each test set they created ) ) _
a minimal subset that preserved the coverage of the originaliYPothesis 1: Test reduction of a naively generated spec-
set. They then compared the fault finding capability of the ification based test-set can produce significant savings
reduced test-set to that of the original set. Their data shows [N terms of test-set size.
that test minimization keeping coverage constant results inyy o hesis 2: Test reduction will adversely affect the fault
little or no reduction in its fault de_tectlon effectiveness. This finding capability of the resulting test set.
observation leads to the conclusion that test cases that do not
contribute to additional coverage are likely to be ineffective ~ We formulated our hypotheses based on two informal
in detecting additional faults. observations. First, in a previous study we got an indica-
To confirm or refute the results in the Wong study, tion that one could achieve equivalent transition and state
Rothermelet al. performed a similar experiment using coverage with approximately 10% of the full test-set gen-
seven sets of C programs with manually seeded faults [30].erated [18], we believe this generalizes to other criteria as
For their experiment they used edge-coverage [11] adequatevell. (A discussion of the various specification coverage
test suites containing redundant tests and compared the faultriteria will follow in Section 3.4 below.) Second, intu-
finding of the reduced sets to the full test sets. In this exper-itively, more tests-cases ought to reveal more faults. Only
iment, they found that (1) the fault-finding capability was an extraordinarily good test adequacy criterion would pro-
significantly compromised when the test-sets were reducedvide a fault finding capability that is immune to variations
and (2) there was little correlation between test-set size andn test-suite size, and we speculate that none of the known
fault finding capability. The results of the Rothermel study coverage criteria posses this property.
were also observed by Jones and Harrold in a similar exper-
iment [24]. 3.1 Experimental setup
These radically different results are difficult to reconcile
and the relationship between coverage criteria, test-suite |n our experiment, the aim was to determine how well a
size, and fault finding capability clearly needs more study. test-suite generated to provide a certain structural or condi-
In the experiment discussed in this paper we attempt totion based coverage reveals faults as compared to a reduced
shed some additional light on this issue. Our work is dif- test-suite providing the same coverage. To provide realistic
ferent in some respects, however. First, we are not studyingresults, we conducted the experiment using a close to pro-
testing of traditional programs, we are interested in test-caseduction model of a flight guidance system from Rockwell
generation and testing of formal specifications. In partic- Collins Inc?
ular, formal specifications expressed in synchronous data: 1We thank Dr. Steve Miller and Dr. Alan Tribble of Rockwell Collins

flow languages commonly used in model-based develop-juc. for the information on flight control systems and for letting us use the
ment, for example, Esterel, SCADE, SpecTRM, SCR, and RSML—¢ models they have developed usiNgvBuUS.




We conducted the experiment through the the steps out—[ AT J ['"‘eve"de"l LI
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lined below. Each step is elaborated in detail in the follow- ) [ '-

Ing sections. Flight Modes

1. We used the original FGS specification to generate Horizontal Modes Vertical Modes
test-suites to various coverage criteria of interest, for
example, transition coverage or MC/DC. Note here
that we did this neévely in that we generated a test-
casefor eachconstruct we needed to cover. Thus, the Heading Select
test-suites were straight forward to generate, but they )
were also highly redundant.

2. We generated 100 faulty specifications of the FGS by

Altitude Hold

randomly seeding one fault per faulty specification. ;
The fault classes we seeded are discussed in Sectior Altiie Seleet

3.3. : .
3. We ran the full (non-reduced) test suite on the 100 -
faulty specifications and recorded the number of faults

revealed. E SEE L T

4. We generated and ran five reduced test suites for eact ‘ : =) }
full test-suite, ensuring that the desired coverage crite- Tateral Go Around Vertical Go Around
rion was maintained. As discussed below, we gener- [ = A - J
ated five reduced sets for each full test-suite to avoid Path

e O]

skewing our results because we were lucky (or un-
lucky) in the selection of tests for a reduced test-suite.
5. Given the results of the previous steps, we compared
the relative fault finding capability of the full test-
suites versus the reduced test-suites. Figure 2. Flight Guidance System

In the remainder of this paper we provide a detailed de- half-bank mode, that control other aspects of the aircraft’s
scription of activities involved in the experiment and discuss behavior.

our findings. The FGS mode-logic model we have used in the exper-
iment is production sized, but does not represent any ac-
3.2 Case Example: The FGS tual Rockwell Collins product. The model consists of 2564

lines of code in RSML“and consists of 142 state variables.

A Flight Guidance System (FGS) is a component of the When translated to SMV it consists of 2902 lines of code
overall Flight Control System (FCS) in a commercial air- and required 849 BDD variables for encoding in NUSMV.
craft. The FGS was developed using the RSMianguage. ~ The FGS is ideally suited for test case generation using
It compares the measured state of an aircraft (position,odel checkers since it s discrete—the mode logic consists
speed, and altitude) to the desired state and generate pitcRntirely of enumerated and Boolean variables.
and roll guidance commands to minimize the difference be-
tween the measured and desired state. The FGS can be bre¢-3  Fault Injection and Detection
ken down to mode logic, which determines which lateral ) )
and vertical modes of operation are active and armed atany 10 Provide targets for our testing effort, we created a col-
given time, and the flight control laws that accept informa- lection of faulty specifications. To create the faulty speci-

tion about the aircraft's current and desired state and com-fications, we first reviewed the revision history of the FGS
pute the pitch and roll guidance commands. In this caseModel to understand what types of faults were removed dur-
study we have used the mode logic. ing the original development and ver|f|cat|op process. We
then implemented a random fault seeder to inject represen-
NIMBUS environment. The primary modes of interest in tative faults to _creat_e_ a suite of faulty s_pecification_s. The
the FGS are the horizontal and vertical modes. The hori-faults that we identified as common mistakes during the
zontal modes control the behavior of the aircraft about the FGS development effort and then implemented in the fault-
longitudinal, or roll, axis, while the vertical modes control S€€der fall into the following four categories:

the behavior of the aircraft about the vertical, or pitch, axis. Variable Replacement (VR): A variable reference was re-

In addition, there are a number of auxiliary modes, such as placed with a reference to another variable of the same

Figure 2 illustrates a graphical view of a FGS in the



type. Variable Domain Coverage: (Often referred to as state-

Condition Insertion (Cl): A condition that was previ- coverage.) Requires that the test Beftas test-cases
ously considered a “don’t care” (*) in one of the tables that enable each control variable defined in the model
was changed to T (the condition is required to be true). Y. to take on all possible values in its domain at least

Condition Removal (CR): A condition that was previ- once.
ously required to be true (T) or false (F) in a table was Transition Coverage: Analogous to the notion of branch
changed to “don’t care” (*). coverage in code and requires that the testishas

Condition Negation (CN): A condition that was previ- test-cases that exercise every transition definition in
ously required to be true (T) in a table was changed at least once.
to false (F), or vice versa. Decision Coverage:Each decision occurring i evalu-

ates to true at some point in some test-case and eval-
We used our fault seeder to generate 100 faulty specifi-  uates to false at some point in some other test case.
cations (25 for each fault class). Note that if the decision is, for example, in a function,

During our testing experiment, we used an quite sensitive there is no requirement that the function is actually
oracle to determine if a test-case revealed a fault. Given the invoked—this criterion only requires that the decision
input sequence of a test-case, we compared both the gen-  would have evaluated to true/false if it was evaluated
erated output as well as the internal state of the model to during the test case.
determine if a fault was present. Thus, our oracle was ableDecision Coverage with Single UsesAnalogous to deci-
to detect faults that may not have manifested themselves as  sion coverage, but the decision must actually be eval-
erroneous outputs, but only as a corrupt model state. We uated. For example, for a condition in a function, the
chose this approach since we expect this to be the type of condition must evaluate to true/false while the function

oracle used when performing conformance testing of auto- is invoked from some point in the model.
generated code. Modified Condition and Decision Coverage (MCDC):

Every condition within the decision has taken on all
3.4 Specification Based Test Criteria possible outcomes at least once, and every condition

has been shown to independently affect the decision’s

L . outcome. Note again that invocation of the decision is
Adequacy criteria are used by testers to decide when to not required 9

stop testing by helping them determine if the software haSMCDC with Single Uses: Analogous to modified condi-

gﬁzg iﬂegu;‘tﬁgh:(e;tsgs' Idnaiglilgva\:pseré::?ﬁi:tigztﬁgs irae ie' tion and decision coverage, but the decision must actu-
y P guage. ally be evaluated.

We are using the specification language RSM[33]in our

study, but the criteria are applicable without modification to The reader may wonder why we have included the cov-

a broad class of languages. An RSWMLmodel consists of o . -
; . .erage criteria that do not require that decisions are actually
state variables and a next state relation for these state vari- o . .
. : . . ... __evaluated. These criteria are included because there is no
ables (this can be viewed as state machines with transitions . I DR
: ) consensus if the definitions of the coverage criteria in, for
between the states). The next state relation defines under . 2
; o . example, DO-178B [31], require the decisions to be eval-
which conditions the state variables change value (the state
. , : uated or not. A more formal treatment of these coverage
machines changes state), and are given in terms of Boolean .. ~- -
: : . : . . . criteria can be found in in [28, 29] and [16, 32].
expressions involving variables and arithmetic, relational,
or boolean operators. . )
We useT to represent a test-suite adtifor the formal ~ 3-3 Test Set Generation and Reduction
model. In the following definitions, &est-caseis to be
understood as a sequence of values for the input variables We generated full test-suites using the approach dis-
in the model: and the expected outputs and state changescussed in Section 2.2. We used tie1BUS tool-set (an ex-
caused by these inputs. The sequence of inputs will glide  ecution and analysis environment for RSW) to translate
from its initial state to the structural element, for example, a to the input language of NuSMV [8] and also to generate
transition, the test-case was designed to covetiesi-suite the trap properties corresponding to the test coverage crite-
is simply a set of such test cases. In this paper we use theia discussed above. The model and the trap properties are
following six specification coverage criteria. Note that for then given to the NuSMV tool to create the full test-suites.
the condition based coverage criteriazamditionis defined A single test-case in most cases may satisfy more than
as a Boolean expression that contains no Boolean operatorsne test obligation. For instance, a test-case used to cover
and adecisionis Boolean expression consisting of condi- a certain state of interest may also cover other states during

tions and zero or more Boolean operators. its execution. This then provides for a way to reduce the



Algorithm 3.1: TEST-REDUCEX,T", n) fault-class).

There are several things worth noting about Table 1.

INPUTS : First, we did not attempt to eliminate specifications where
Model %, test suite I', and test criterion 7 the seeded fault did not yield a behaviorally different spec-

OUTPUT : ification. Thus, the numbers do not say anything about
Reduced test set (2 the absolute fault finding capabilitpf the various cover-

age criteria; we can only evaluate tredative fault finding

Q2 0; ReducedTest set capability. Nevertheless, to get a basic idea of the fault

AC + 0; Actu_al Coverage finding capability of the test-suites designed to provide the
PC — 0; Previous Coverage various structural coverage, we also created a collection of
shuf fle(l); randomly generated tests. We expended approximately the
repeat same amount of time automatically generating and running
choose a test case f from I'; the random tests as we did running the tests providing tran-
run f against the model X sition coverage. Thus, the randomly generated tests serve
Measure actual coverage AC; as a simple baseline for the other test suites; one would ex-
if AC'# PC pect the tests carefully crafted to provide a certain cover-
thenQ — QU {f} age to perform better than the randomly generated test-set.
PC — AC; As can be seen in Table 1, the randomly generated test per-
until I" is exhausted form surprisingly well compared to the test-suites providing
retun (Q); structural coverage. We have discussed the reasons behind

. . _ _ the poor performance of Variable Domain and Transition
Figure 3. Algorithm for test-suite reduction. Coverage in a previous study [17] and a discussion of this
éopic is outside the scope of this paper.

From the results in Table 1 one can also observe that the
more rigorous the test criteria, the better the fault finding
quirements is in general a NP problem [12], but often capability. For instance, MCDC with usage detgcts more

. . - faults (72%) than any other coverage criteria considered and
greedy heuristics suffice to generate significantly reduced

test-suites. The method we use begins with an empty sef Iso outperforms random testing (66%).

of test cases and initializes the coverage to zero (Figure 3). . .

The greedy algorithm then randomly picks a test-case from4-1 ~ Test-Suite Reduction

the full test-suite, runs the test, and determines if the test-

case improved the overall coverage (for whatever criterion ~As mentioned earlier, we generated five different re-

in which we are interested). Any test-case that improves theduced test-suites to control the possibility that we by chance

coverage is added to the reduced set. This continues untigot a very “good” or very “poor” reduced test-suite. The re-

we have exhausted all the test-cases in the full test-suite—Sults of the reduction algorithm can be seen in Table 2.

we now have a, hopefully, much smaller suite that has the ~The results support our first hypothesis that test reduc-

same coverage as the full test-suite. tion results in significant savings in terms of test-suite size.
Note that we randomly select test-cases from the full set !N @ll cases there was at least an 80% average reduction in

to create a reduced test-suite. We then generate five sepa{he si_ze of the test-suite. This reduction reinforces_the find-

rate reduced test-suites for each full test-suite. We choosdndS in [34, 35, 30, 24] and is to be expected since our

this approach to reduce problems related to skewing the relest-case generation method produces a significant number

sults by accidentally picking a “very good” (or bad) set of Of Overlapping test-cases; we generate a separate test-case
test-cases. The results for all test runs are included in thisfOr €ach construct of interest. Of more interest is the fault

report. finding ability of the reduced tests-suites discussed next.

size of the final test-suite by choosing a subset of test-case
that preserves the coverage obtained by the full test-suite.
Finding a minimal test-suite that satisfies the test re-

) . 4.2 Effect on Fault Detection Effective-

4 Experimental Results and Analysis ness
As a baseline for our experiments, we ran the full test-  The fault finding capability of the full as well as reduced

suites as well as a randomly generated sets-set. The resultest-suites is summarized in Table 3. The results are in

are summarized in Table 1. The table shows the number ofagreement with our second hypothesis that test-suit reduc-
test-cases in each test-suite and their fault finding capabilitytion will adversely impact the fault finding ability of test-

(total fault finding capability as well as broken down per suites that are derived from synchronous data-flow models.



[ TestCriteria | Size[| VR [ CN [ CI [ CR | Total ||
Random 100 | 21| 25| 5 | 15 66
Variable Domain| 115 | 14 | 15 | 2 4 32
Transition 313 20 | 24 | 5 15 64
Decision 435 23 | 24 | 5 15 67

7

7

8

Decision Usage| 478 || 23 | 24 15 69
MCDC 537 || 22 | 25 16 70
MCDC Usage | 334 | 23 | 25 16 72

Table 1. Full test set generation for various criteria along with their fault detection capability

[ Criteria | FullSet [ Run1 [ Run2 [ Run3 [ Run4 [ Run5 [ Average | Reduction |
Variable Domain 115 19 22 18 21 21 20.2 82%
Transition 313 35 43 29 38 43 37.6 88%
Decision 435 45 44 44 45 42 44.0 90%
Decision Usage| 478 37 43 47 43 38 41.6 91%
MCDC 537 34 33 29 34 32 32.4 94%
MCDC Usage 334 30 30 33 32 33 31.6 91%

Table 2. Reduced test set sizes for various test reduction runs

As shown in Table 3, the number of faults detected by experiment, however, that reduction in fault-finding seems
the reduced test-suites is significantly less for all coverageto be reasonablpredictable each of the five reduced test-
criteria that were examined in our experiment; in all cases suites we randomly generated for each coverage criterion
there was at least a 7% reduction in the fault detection effec-have approximately the same fault-finding capability. This
tiveness. One may argue that a 7% reduction is rather smallstands in stark contrast to the results in the Rotheathal,
but for our domain of interest, automated code generation inand Jones and Harrold studies where the reduction in fault
critical systems, any reduction in fault finding ability is un- finding varied between 0% and 100% [24, 30].
acceptable. We do not have a ready explanation for this phenomenon,

From our results we can also observe that the most rig-but we speculate that it may be related to two factors; (1)
orous coverage criteria, MC/DC with Usage, seems to bethe coverage criteria used in the experiment and (2) the ac-
the least sensitive to the effect of test-suite reduction. Wetual coverage provided by the test-suites. The Rotheetel
speculate that this is because it is simply harder to comeal. study [30] used edge-coverage of the control flow graph
up with a test-suite that provides this high level of cover- (equivalent to the transition coverage in our domain) and
age without finding faults—MC/DC with Usage is simply most of our criteria are more rigorous than edge-coverage.
a “better” coverage criterion than the other ones we usedSince there seems to be a correlation between the rigor of
in our experiment. We hypothesize that MC/DC with Us- the coverage criterion and the variability in fault-finding of
age is better than the other criteria in two respects. First, itthe reduced test-suites, this may be part of the explanation
seems to find more faults than any other criteria. Second,for our results. The Jones and Harrold study [24] used
it seems to be less sensitive to the effect of test-suite reducMC/DC as the coverage criterion in their experiment, but
tion. Thus, MC/DC with Usage is the closest to tHeal the test-suites they used did not provide complete MC/DC
coverage criterionin this domain we have seen to date; a coverage. Their reduced test-suites providedsdmaecov-
test-suite generated to the ideal criterion would detdict  erage of the code as the full suite, but the full suite did not
faults in the system under test andy test-suite, large or  provide coverage up to 100% of the criterion of interest.
small, providing this coverage would reveal the same faults. In our case, we provided full coverage of every criterion.

Our results are markedly different than the results re- The fact that we worked from complete test-suites may have
ported in previous studies [35, 24, 30]; one of the studies made our test suites less susceptible to the variations if fault
reports no reduction in fault finding and two studies report a finding observed in their study. Needless to say, further
dramatic and varied reduction in the fault finding capability study is clearly needed to understand these issues better.
of the reduced test-suites. In our study we observe amodest, To summarize the findings, reduction of test-suite size
but notable, reduction in the fault-finding capability. In our has an unacceptable effect on the suite’s fault finding capa-



[ Criteria | FullSet [ Run1 [ Run2 [ Run3 [ Run4 [ Run5 [ Average | Reduction |

Variable Domain 32 28 29 25 28 25 27.0 15.6%
Transition 64 58 58 58 59 57 58.0 9.38%
Decision 67 62 61 62 62 61 61.6 8.06%
Decision Usage 69 62 63 63 62 63 62.6 9.28%
MCDC 70 64 63 63 63 63 63.2 9.71%
MCDC Usage 72 67 66 67 67 67 66.8 7.22%

Table 3. Fault finding capability of the reduced test-sets

bility. Should there be an urgent need to reduce the test-and our results raise serious doubts about the use of any
suite size because of resource limitations (in terms of, for test-suite reduction techniques in this domain.

example, time), we speculate thaist-case prioritization

[24] would be a better approach than test-suite reduction5, Summary and Conclusions

(or minimization). In test-case prioritization, we would

not eliminate any test-cases from our test-suite; we would  \ve have described an experiment in which we investi-
instead attempt tsort the test-cases based on expected gated the effect of test-suite reduction in the domain of auto-
fault finding potential and execute the ones deemed to bematically generated conformance test-suites. As a system-
most likely to reveal faults first. We would terminate the nder-test, we used a model of a production sized Flight
testing when our resources are depleted. Naturally, moregyigance System seeded with “representative” faults. Our
work is needed to determine how to prioritize test cases andregyits confirm our two hypotheses; one can dramatically
also empirically evaluate if the test-case prioritization ap- requce the automatically generated conformance test-suites
proach in fact performs better than reduced or minimized \yhile maintaining desired coverage, and the fault finding

test-suites. of the reduced test-suites was adversely affected. Although
we cannot broadly generalize our results and further stud-
4.3 Threats to Validity ies are needed, the experiment indicates that test-suite re-

duction may not be an effective means of reducing testing
effort—the cost is terms of lost fault finding capability is

There are three obvious threats to the external validity implv too high: llv in the critical tems domain
that prevents us from generalizing our observations. First,.S Py 100 Nigh, especiatly € chitical systems doma

. . . in which we are mainly interested.
and most seriously, we are using only one instance of a for- y

mal model in our experiment. Although the FGS is an ideal teril; ur;ﬁi;]m;;el\'ﬂg%gsu:tosvzgg'(;aéee:tr:tgﬁﬁi::gic;]mlizcg:
example—it was developed by an external industry group, ' P g cap

(i g, represeis el system,and  of e ok P90 0 0 Lt sutes o vl s e retced e,
importance—it is still only one instance. The characteris- P 9 '

tics of the FGS model, for example, it is entirely modelled dog:'slgr;dntgirlsr'ggﬂlé O\ﬁéagreé skeptical towards anv test-
using Boolean and enumerated variables, most certainly af_suite reduction techni u,es that aim szlel to maintain Ztruc-
fects our results and makes it impossible to generalize the q y

. . . tural coverage, because, in our opinion, there is an unac-
results to systems that, for example, contain numeric varl-Ce table Iosg, i terms of test suitep ualitv. Thus. we advo
ables and constraints. p d Y- ’

. . : cate research into test-case prioritization techniques and ex-
Second, we are using seeded faults in our experiment.

: : erimental studies to determine if such techniques can more
Although we took great care in selecting fault classes thatIO d

represented actual faults we observed during the develo reliably lessen the burden of the testing effort by running a
P ) 9 PSubset of an ordered test-suite as opposed to a reduced test-
ment of the FGS model, fault seeding always leads to a

- ite, without | in fault findin ility.
threat to external validity. suite, without loss in fault finding capability

Finally, we only considered a single fault per model. Us-
ing a single fault per specification makes it easier to control
the experiment. Nevertheless, we cannot account for the ) . :

P . . [1] M. Archer, C. Heitmeyer, and S. Sims. TAME: A PVS in-
more complex fault patterns that may occur in practice. o
. terface to simplify proofs for automata models.User In-

Although there are several threats to the external validity terfaces for Theorem Provers99s.
of our experiment, we believe the results are representative [2] S.Bensalem, P. Caspi, C. Parent-Vigouroux, and C. Dumas.
of a large class of models in the critical systems domain A methodology for proving control systems with Lustre and
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