
Deviation Analysis Through Model Checking∗

Mats P.E. Heimdahl, Yunja Choi, Mike Whalen
Department of Computer Science and Engineering, University of Minnesota

200 Union Street S.E., 4-192, Minneapolis, MN 55455, USA
{heimdahl,yuchoi,whalen}@cs.umn.edu

Abstract

Inaccuracies, or deviations, in the measurements of mon-
itored variables in a control system are facts of life that con-
trol software must accommodate—the software is expected
to continue functioning correctly in the face of an expected
range of deviations in the inputs. Deviation analysis can be
used to determine how a software specification will behave
in the face of such deviations in data from the environment.
The idea is to describe the correct values of an environmen-
tal quantity, along with a range of potential deviations, and
then determine the effects on the outputs of the system. The
analyst can then check whether the behavior of the software
is acceptable with respect to these deviations.

In this report we wish to propose a new approach to
deviation analysis using model checking techniques. This
approach allows for more precise analysis than previous
techniques, and refocuses deviation analysis from an ex-
ploratory analysis to a verification task, allowing us to in-
vestigate a different range of questions regarding a system’s
response to deviations.

1. Introduction

Often, because of inherent limitations in sensors, a con-
trol system is presented with slightly inaccurate information
about its environment. These inaccuracies are deviations
from the actual value of an environmental variable. These
deviations can stem from a number of sources: inaccurate
sensors, electrical interference on a wire, a garbled message
over a bus, etc. Frequently, control software must continue
to function correctly within an expected range of deviations
in the inputs.

Deviation analysis is concerned with discovering and
classifying any changes in system behavior between two
identical control systems in slightly different environments.

∗This work has been partially supported by NASA grant NAG-1-224
and NASA contract NCC-01-001.

One system is provided with absolutely accurate input data
from the environment, and the other is provided with a
slightly inaccurate deviation model of the environment, cre-
ated by an analyst. Deviation analysis can be distinguished
from standard verification and validation activities in that
the control system in question, given correct inputs, is al-
ways assumed to be correct—we are not interested in look-
ing for faults in the model under perfect operating condi-
tion. Instead, it is a mechanism for determining the robust-
ness of the control system in the face of expected inaccura-
cies in input data.

This idea has been explored in previous work [9, 10, 11]
using symbolic execution and partial evaluation. Given
qualitative descriptions (e.g. “very high”, “low”) of devi-
ations on system inputs, this work allows open-ended ex-
ploratory analysis of effects on system outputs. For exam-
ple, using the symbolic execution technique, one can ask:
“What are the possible effects on the primary flight display
if the altitude reading is deviated so that it is ‘higher’ than
the correct value?”. Unfortunately, the qualitative abstrac-
tions used in this approach lead to situations where it is dif-
ficult to determine how a deviation will affect the value of
an output.

In this paper, we describe an alternate approach to devia-
tion analysis. Our approach works by restating exploratory
deviation analysis questions as verification tasks suitable for
model checking [3]. For example, the flight display ques-
tion can be restated as follows: “Will the correct and de-
viated primary flight displays always match if the altitude
reading is high by 0 to 100 feet?”. This approach is more
precise than previous approaches and supports an alternate
verification style. We have defined the mechanism for per-
forming this analysis and implemented a prototype tool.

In the next section we describe previous approaches to
deviation analysis in more detail. Sections 3 and 4 describe
how deviation analysis questions are formulated as verifi-
cation problems and implemented using a model checker.
Section 5 presents a small example of the approach. Finally,
Section 6 provides a short discussion and future directions.

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

2. Background

Reese and Leveson introduced the notion of software de-
viation analysis in 1996 [11]. The method is based on the
Hazard and Operability (HAZOP) analysis [2, 5], a success-
ful procedure used in the chemical and nuclear industries.
This section gives the reader an overview of the evolution
of software deviation analysis and the developments that led
to the approach described in this paper.

Hazard and Operability analysis (HAZOP): Devel-
oped for the British chemical industry in the 1950’s, HAZ-
ard and OPerability analysis (HAZOP) [2, 5] is a manual
analysis technique in which a HAZOP leader directs a group
of domain experts to consider a list of deviations. In HA-
ZOP, a deviation is the combination of a guide word, such
as “too-high,” with a system variable, e.g., “expansion tank
pressure,” yielding a question: “What is the potential effect
of the pressure in the expansion tank being too high?” The
answer to the question is now used to pose additional ques-
tions (following the same “guide-word/system variable” ap-
proach) about the effect of the result of the first question. In
this way, the deviations are propagated through the system
in an attempt to discover hazardous results.

There have been some attempts to adapt the manual HA-
ZOP technique to include software [6], but these techniques
are essentially identical to a standard manual HAZOP ex-
cept that the guide-words are changed and the model of the
system may differ from the original plant diagrams from the
chemical processing industry (pipes, tanks, and valves) used
in the original approach. Because of the complexity of con-
trol software (as compared to the pipe diagrams of the past)
and the lack of a formalism for propagating the deviations
through the software, these techniques are largely infeasi-
ble in practice. To address these problems and bring HA-
ZOP related techniques to the safety critical software field,
Reese and Leveson developed software deviation analysis.

Software Deviation Analysis: Software Deviation Anal-
ysis [9, 10, 11] overcomes some deficiencies with HAZOP.
Software Deviation Analysis is based on the same underly-
ing idea as HAZOP—accidents are caused by deviations in
system parameters. Using a blackbox software or system re-
quirements specification, the analyst provides assumptions
about particular deviations in software inputs and hazardous
states or outputs, and the software deviation analysis au-
tomatically generates scenarios in which the analyst’s as-
sumptions lead to deviations in the specified outputs. A
scenario is a set of deviations in the software inputs plus
constraints on the execution states of the software that are
sufficient to lead to a deviation in a safety-critical software
output; in a sense, deviation analysis is a symbolic execu-

tion of a software requirements model including the devia-
tions in the evaluation.

To represent the deviations, Reese and Leveson use qual-
itative mathematics—a branch of mathematics that operates
on categories of numbers rather than the numbers them-
selves. For instance, a negative number multiplied by a
negative number equals a positive number. The advantage
to deviation analysis is that general results (whole classes of
deviations) can be propagated quickly and clearly. In [11],
Reese developed a calculus of deviation that formed the ba-
sis for their tools—a sample expression from the calculus
is “Very High-Positive × Normal-Negative = Very Low-
Negative.” With this calculus and the deviation analysis
tools, an analyst can pose a questions such as “If the alti-
tude altitude reading on altimeter 1 is ‘Very-High-Positive’,
what will be the effect on the pitch command?”

In an attempt to implement this analysis procedure in the
NIMBUS tool at the University of Minnesota1, we came to
the conclusion that the qualitative mathematics used in soft-
ware deviation analysis did not provide the analysis accu-
racy that we required. Therefore, we developed a related
approach based on interval calculus as opposed to qualita-
tive mathematics.

Perturbation Analysis: Perturbation analysis is an adap-
tation and simplification of Reese’s deviation procedure for
the RSML-e language. RSML-e [12, 13] is a synchronous
dataflow language in which the specification state is com-
prised of a set of state variables, each describing a portion
of the specification behavior.

In perturbation analysis, the user specifies a state vari-
able of interest (VOI), and we construct a partial machine
state containing perturbed values of input variables that we
use to compute the nominal and perturbed values of the
VOI. We can then study these values to determine if the
perturbation is within acceptable limits.

For example, suppose we have a state variable z, defined
as follows (using the textual RSML-e syntax):

STATE_VARIABLE z: INTEGER
PARENT : NONE
INITIAL_VALUE : 0
CLASSIFICATION : State

EQUALS x * 2 IF b
EQUALS y IF not (b or c)
EQUALS x * 2 - y IF not b and c

END STATE_VARIABLE

From the definition, z references two input variables, x
and y. Perturbations in x and y will manifest themselves
in perturbations of z. Therefore, we must prompt the user

1NIMBUS is a execution, analysis, and code generation environment for
the sate-based, fully formal specification language RSML-e.

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

to decide to what extent x and y are perturbed. The user
provides a range of correct values and also a range of per-
turbation.

For our example, a user could define x and y as follows:

Variable Correct Range Perturbation Range
x [0..10] [-1..3] [-1..13]
y [5..60] [10..20] [15..80]

In this scenario, the correct value of x could range from
[0..10], but because of sensor errors, each value of x could
be perturbed anywhere from 1 less than its true value to
3 greater than its true value. Thus, the potential range of
perturbed values is from [-1..13]. We compute both the po-
tential correct values of the VOI and a range of perturbed
values given perturbed inputs.

Because we are describing variable ranges, several dif-
ferent assignment conditions could hold for a given state
variable. Therefore, we output of the analysis results a set
of 〈 condition, correct, perturbed 〉 tuples, where if con-
dition condition holds, then correct describes the possible
correct range of values and perturbed describes the maxi-
mum perturbation possible.

In our example, given perturbations in x and y, the tuples
are as follows:

Condition Correct z Range Deviated z Range
b [0..20] [−2..26]

¬(b ∨ c) [5..60] [15..80]
¬b ∧ c [−60..15] [−82..11]

This analysis is appealing since it helps answer many
questions during safety analysis that can be very difficult to
address without tool support.

Issues with Existing Approaches: These analyses, while
useful, have issues that must be resolved before they are
applicable in realistic applications. The most serious issue
involves the interplay between intervals (whether numeric
or qualitative) and Boolean conditions within the specifica-
tion. The intervals are often too large to accurately partition
the conditions into cases in which the deviated specification
behaves differently than the non-deviated specification. For
example, given the definition of z, a useful question might
be: “Are there any circumstances when the non-deviated z
is greater than 18 but the deviated value is less than 18?”
For this question, the output of the deviation analysis as well
as perturbation analysis provides no help. The user must go
back and describe smaller correct intervals in order to im-
prove the accuracy of the analysis.

Also, given the interval procedure above, we can deter-
mine the maximum and minimum of the deviated range, but
it is not as straightforward to determine the maximum and
minimum deviation. Similarly, with qualitative methods,
the output of the analysis describes only qualitative ranges
of deviations.

Finally, the perturbation analysis was originally defined
is a ‘one-step’ analysis; it does not record how a series of
perturbations affects the specification over time. Unfortu-
nately, many of the properties that one is interested in (e.g.
stability) can only be checked over multiple steps. The devi-
ation analysis, while allowing multiple steps, requires user
guidance to successfully explore a multi-step state space.
While pondering these drawbacks, the solutions started to
look more and more like some variant of temporal logic
model checking. This fact led to our investigation of alter-
native approaches to symbolic execution and was the gen-
esis of the model checking ideas presented in the next sec-
tion.

3. Deviation analysis as a verification problem

Because of the issues with the symbolic execution ap-
proach discussed above, we developed a novel technique to
use model-checking techniques to perform deviation anal-
ysis2. As mentioned above, deviation analysis is intended
to answer “What if?” questions such as “What is the ef-
fect on the output DOI-Command if the altitude reading is
‘high’?”. This question can be explored with the techniques
discussed in the previous section. By restating the question
to “Will there be an effect on the DOI-Command if the alti-
tude reading is off by 0 to 100 feet?”, we change the analysis
from an exploratory analysis to a verification task suitable
for model checking.

Consider the example with x, y, and z introduced above.
In the original statement, we are simply interested in com-
puting all variables that are data dependent on x and y in any
way. We would then investigate the result and see if any of
the affected variables had a deviation that was unacceptably
large. If we restate our problem as “Given a deviation of x
and y, will the deviation of z be within an acceptable mar-
gin?”, we can formulate it as a temporal logic property and,
with creative use of a model checker, verify that the devia-
tion is acceptable or provide an example (counter example)
of how the deviation of z may become too large.

The general approach to deviation analysis using model
checking is to represent the system under investigation with
two models, one representing the behavior of the system
with no deviation and the other representing the deviated
system (Figure 1 outlines the general approach). We want
the two models to operate on exactly the same inputs, ex-
cept for the input variables that are deviated—we can then
compare the computed states of the two systems and see if
any critical deviations are present.

To assure that the discrepancy of computed states of the
two systems are purely due to the given deviation, we im-

2We will use Reese’s and Leveson’s original name of the analysis since
we abandoned perturbation analysis before it was fully implemented in a
usable tool.

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

model checking

deviation

properties
The deviation is

tolerable

The deviation is not
tolerable

the property is true

the property is false

original system model

duplicated system model

Figure 1. General approach of the deviation
analysis using model checking.

pose two types of constraints on input variables; (1) for non-
deviated input variables, both system models must receive
the same values in each step, (2) for deviated input variables
(only existing in the deviated system model), all deviated
variables have exactly the value of the corresponding in-
put variables in the original system plus possible deviations.
The two system models are tied together through these con-
straints on the input variables.

As an example, let us use the xyz example from above.
We would provide two system models; one expressed in
terms of the variables x, y, and z, and the other (deviated
system) in terms of the variables x d, y d, and z d. Note
that the models would be identical except for the names of
the variables. We can now tie the ‘correct’ and ‘deviated’
system together with constraints on the input variables. Let
us assume that we want to investigate how z is affected by
a [0..10] deviation of x. By defining the constraints y d=y
and x d=x+[0..10] we have stated that there is no deviation
in the variable y and a deviation of [0..10] in variable x. If
we want to investigate if z is affected by the deviation, we
can state that it is globally true that z=z d. If this property
can be verified, the deviation in x does not propagate to z.
If verification fails, we will get an example of a situation
when the deviation in x shows up as a deviation in z. We
can also capture the notion of acceptable deviations using
this approach. For instance, if x is deviated, an acceptable
deviation of z might be e. This can be stated as it is globally
true that (z d -e ≤ z ≤ z d+e).

The greatest challenge of using model checking for de-
viation analysis is in dealing with the state space explosion
problem. Since we are duplicating the system model, the
number of system variables may be doubled and, conse-
quently, the size of the state space may explode. Also, since
we are often interested in the actual values of data variables,
dealing with data variables ranging over large domains is an
issue that must be overcome. We will discuss these issues in
Section 4 where we discuss the implementation of deviation
analysis using a model checker.

original system
model

System Environment

input A;

original system
model

System Environment

input A;

duplicated system
model

System Environment

input A;

constraint

A of duplicated system
 =

A of original system +
deviation

Figure 2. Modelling Scheme 1—simple dupli-
cation.

4. Deviation analysis using a model checker

The analysis ideas outlined above can be realized by ei-
ther (1) providing two models of the original system and
tie the input variables together with constraints, or (2) pro-
viding one model that is instantiated twice under the same
system environment. We will discuss these approaches and
their pros and cons in some detail below.

System model duplication: As shown in Figure 2, we
can simply duplicate the original system model and check
for critical discrepancies between the behavior of the origi-
nal system and that of the duplicated system with deviation
introduced.

The constraints between input variables of the original
system and the duplicated system can be imposed outside
of the two models as invariants. For example, suppose the
original system has two input variables X and Y and we
want to perform a deviation analysis on the input variable
X. The constraints would be imposed in NuSMV [8] as fol-
lows (variables with a d subscript represents the variables in
the deviated system):

INVAR Yd = Y
INVAR Xd = X + deviation

The benefit of using this approach is mainly its simplic-
ity; once we have an automated translation between a pro-
gram or a specification, and a target input language of a
model checker, no extra work is required for this approach
other than duplicating the system and imposing constraints
between the input variables. This approach, however, is in-
efficient since it duplicates all variables (and thus, increas-
ing the state space when model checking) and it requires
costly computations during model checking such as invari-
ant assignments and computations.

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

original system
model

System Environment

System Environment

original system
duplicated

system

Input : A;
Deviation : B;

input A;

A A+B

Figure 3. Modelling Scheme 2—embedding.

System model embedding: An alternative approach is to
embed the original system and the deviated system inside
of a common environment and check the outputs of both
embedded systems. As shown in Figure 3, we use a two
level model hierarchy. The top level is responsible for mod-
elling the input variables to the system. The ‘correct’ and
‘deviated’ versions of the system models are represented as
subsystems. The top level will then pass the necessary vari-
ables to the subsystems—variables that are not deviated will
be passed to both subsystems as they are whereas variables
that are deviated will be passed with a deviation added to
the subsystem designated to be ‘deviated’. The two subsys-
tems execute synchronously and they compute the values
of state variables based on the input values received from
the parent. We can now express the properties of interest as
properties over the two subsystems.

Note that the input variables are declared only once in
the parent system in this modelling scheme and we do
not need to impose extra constraints for input variables as
invariants—this saves on both verification time and required
memory space.

The table in Figure 4 shows a performance comparison
of the two modelling schemes for one deviation analysis
over the our sample system, the Altitude Switch, (after ap-
plying abstraction on numeric variables as described in the
next section).

simple duplication

embedding

of BDD variables memory usage time usage

221

161

10 M

 5 M

41.21 s

0.96 s

usagescheme

Figure 4. A comparison of the two modelling
schemes.

Since the embedding scheme is more efficient, we have
chosen to pursue this approach for our prototype tool. We
have implemented a prototype tool that uses RSML-e as the
source language and produces output to NuSMV [8]; never-
theless, our approach is not limited to any particular model
checking tools. In the next section we will illustrate the ap-
proach with a simple example.

5. A small example

We will use a very simple system from the avionics do-
main to illustrate our approach to deviation analysis. The
Altitude Switch (ASW) is a (somewhat) hypothetical device
that turns power on to another subsystem, the Device of In-
terest (DOI), when the aircraft descends below a threshold
altitude and turns the power off again after we ascend over
the threshold plus some hysteresis factor (the example is
adopted from [7, 12]). The robustness to deviations in the
altitude measures is the subject of interest in this section.

The ASW: The version of the ASW used in this paper re-
ceives altitude information from some number of radio al-
timeters. The functioning of the ASW can be inhibited or
reset at any time. This raises questions, for example, about
how the ASW should operate if it is reset or inhibited while
crossing the various thresholds. In our initial version of the
ASW, we model the perceived altitude status (are we above
or below the thresholds) as shown in Figure 5. Using the
textual RSML-e syntax, we view the AltitudeStatus to be
Unknown at system startup or after a reset. The variable
is assigned the the value in an EQUALS clause when the
guard condition in that clause is true. The guard condition
is expressed in a tabular format we call AND/OR tables. The
left column of the AND/OR table lists the logical phrases.
Each of the other columns is a conjunction of those phrases
and contains the logical values of the expressions. If one of
the columns is true, then the table evaluates to true. A col-
umn evaluates to true if all of its elements match the truth
values of the associated predicates. A dot denotes “don’t
care.” For example, we will set the AltitudeStatus to Above
or Below when we have determined that we are above the
threshold hysteresis or below the threshold respectively—
until then, we consider the AltitudeStatus to be Unknown.
The BelowThreshold() and AboveThresholdHyst() macros
encapsulate the conditions used to determine this informa-
tion based on the altimeter data, this is where potential vot-
ing algorithms providing fault tolerance would be modelled.

The ASW command to the Device of Interest (DOI) is
defined as in Figure 6. At startup and after a reset, we do not
know what the to do with the DOI so we view its status as
Undefined. We power the DOI off under two conditions, (1)
we ascended above the threshold plus the hysteresis value
(the condition @T(..AltitudeStatus = Above) indicating that
the condition AltitudeStatus = Above became true) while
not being inhibited nor reset, or (2) we are currently above
the threshold plus hysteresis and the reset is removed. We
turn on the DOI if the system is operational (i.e. it isn’t
inhibited or reset) and the altitude changed from above to
below (condition rows 1 and 4).

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

STATE_VARIABLE AltitudeStatus :
VALUES : {Unknown, Above, Below, AltitudeBad}
PARENT : PowerStatus.On
INITIAL_VALUE : UNDEFINED
CLASSIFICATION : State

EQUALS Unknown IF
TABLE
ivReset : T *;
PREV_STEP(..AltitudeStatus) = UNDEFINED : * T;

END TABLE

EQUALS Below IF
TABLE

BelowThreshold() : T;
AltitudeQualityOK() : T;
ivReset : F;

END TABLE

EQUALS Above IF
TABLE

AboveThresholdHyst() : T;
AltitudeQualityOK() : T;
ivReset : F;

END TABLE

EQUALS AltitudeBad IF
TABLE

AltitudeQualityOK() : F;
ivReset : F;

END TABLE
END STATE_VARIABLE

Figure 5. The definition of the AltitudeStatus
state variable.

Analysis: Figure 7 shows a major part of the NuSMV
code for the ASW system automatically translated from the
ASW specifications written in RSML-e. Note that this is
the code for one instance of the ASW—not the code we
will create to represent the two ASW systems for deviation
analysis.

Given this system model, we would like to check the tol-
erance of the system in terms of deviation of the measured
altitude. Suppose one of the altimeters is not accurate and
the measured altitude can be deviated by -100 ft . . . 100 ft
from the actual value of the altitude. The main function
of the ASW system is to signal the On command to the
DOI when the aircraft descends below the threshold alti-
tude. Since it is quite critical that the DOI is turned on in
a timely manner, we would like the ASW to tolerate devi-
ations in the altitude measures. In particular, we want to
make sure that the DOI is never turned on ‘too late’. This
can be captured as the property “The deviated system sig-
nals the DOI command On whenever the correct system sig-
nals the DOI command On”. Note here that we are not con-
cerned about the deviation leading to the DOI being turned
on ‘too early’; this is an acceptable performance degrada-
tion in the face of deviations, ‘too late’, however, is not ac-
ceptable.

To achieve this level of fault tolerance we will have to in-
clude more than one altimeter in the ASW system—a pos-

STATE_VARIABLE DOI_Intended :
VALUES : {PowerOff, PowerOn}
PARENT : PowerStatus.On
INITIAL_VALUE : UNDEFINED
CLASSIFICATION : State

EQUALS UNDEFINED IF ivReset = TRUE

EQUALS PowerOff IF
TABLE

@T(..AltitudeStatus = Above) : T *;
..AltitudeStatus = Above : * T;
..ASWOpModes = Inhibited : F *;
@F(..ASWOpModes = Inhibited) : * T;

ivReset : F *;
END TABLE

EQUALS PowerOn IF
TABLE

@T(..AltitudeStatus = Below) : T;
..ASWOpModes = Inhibited : F;
ivReset : F;
PREV_STEP(..AltitudeStatus) = Unknown : F;

END TABLE
END STATE_VARIABLE

Figure 6. The definition of the DOI Intended
state variable.

itive deviation with only one altimeter will always lead to
the DOI being turned on too late. Therefore, we have in-
cluded three redundant altimeters and use a voting scheme
to determine if we are above or below the threshold. A
voting scheme where we require all altimeters to be below
the threshold before we turn the DOI on will, not surpris-
ingly, be useless since a positive deviation in any altimeter
will lead to the DOI being turned on too late. Therefore,
we selected a voting scheme that will ‘obviously’ solve our
problem—we will turn the DOI on as soon as one altimeter
indicates we are below the threshold and we will turn the
DOI off as soon as all altimeters indicate we are above the
threshold plus hysteresis. With this voting scheme, the DOI
will be turned on early of we have a negative deviation in
one altimeter and there will be no change in when the DOI
is turned on if we have a positive deviation. Also, the DOI
may be turned off late if we have a negative deviation in one
altimeter and there will be no change in when the DOI is
turned off if we have a positive deviation (see Figure 8)—at
least that is what we expected before applying our deviation
analysis.

The NuSMV code is translated using the embedding
scheme described in the previous section as shown in Fig-
ure 9. The main module defines input variables for the ASW
system and the range of deviations for one of the altimeters.
It embeds two synchronous sub-processes ASW Original
and ASW Deviated that accept the values of input vari-
ables defined in the main module; correct values for the
process ASW Original and deviated values for the process
ASW Deviated. The definition for the sub-module ASW is
identical to the original ASW system definition except for

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

MODULE main
DEFINE
 --- declare constants ---
AltitudeThreshold:= 2000;
Hysteresis:= 200;
DOIDelay:= 2;
AltBadTolerance:= 5;

VAR
 --- declare input variables ---
Altitude1 : 0..40000 ;
AltitudeQ1:{Good,Bad,Un_defined } ;
Altitude2 : 0..40000 ;
AltitudeQ2:{Good,Bad,Un_defined } ;
Altitude3 : 0..40000 ;
AltitudeQ3:{Good,Bad,Un_defined } ;
InhibitSignal: {Inhibit,NoInhibit};
ivReset : boolean;

--- declare state variables ---
DOICommand: {On,Off,Un_defined } ;
AltitudeStatus: {Unknown,Above,Below,AltitudeBad,Un_defined } ;
ASWOpModes: {OK,Inhibited,FailureDetected,Un_defined } ;
FaultDetectedVariable: {0, 1, Un_defined } ;
DOI_Intended: {PowerOff,PowerOn,Un_defined } ;

--- declare macro variables ---
m_BelowThreshold:BelowThreshold(AltitudeThreshold,Altitude1,AltitudeQ1,Altitude2,AltitudeQ2,Altitude3,AltitudeQ3);
m_AltitudeQualityOK:AltitudeQualityOK(AltitudeQ1,AltitudeQ2,AltitudeQ3);
m_AboveThresholdHyst:AboveThresholdHyst(AltitudeThreshold,Hysteresis,Altitude1,AltitudeQ1,Altitude2,AltitudeQ2,Altitude3,AltitudeQ3);

ASSIGN
init(InhibitSignal):= NoInhibit;
init(ivReset):= 0;
init(AltitudeStatus):=Un_defined;
init(DOICommand):=Un_defined;

--- state variable assignments ---
next(DOICommand):=
 case
 (((next(DOI_Intended)=PowerOn) & !((DOI_Intended=PowerOn)))) : On;
 (((next(DOI_Intended)=PowerOff) & !((DOI_Intended=PowerOff)))) : Off;
 1 : DOICommand ;
 esac;

next(AltitudeStatus):=
 case
 (((AltitudeStatus= Un_defined))) | (((next(ivReset)))) : Unknown;
 ((next(m_BelowThreshold.result))&(next(m_AltitudeQualityOK.result))&!((next(ivReset)))) : Below;
 ((next(m_AboveThresholdHyst.result))&(next(m_AltitudeQualityOK.result))&!((next(ivReset)))) : Above;
 (!(next(m_AltitudeQualityOK.result))&!((next(ivReset)))) : AltitudeBad;
 1 : AltitudeStatus ;
 esac;

next(ASWOpModes):=
 case
 (((next(ivReset)))) : Un_defined ;
 (((next(InhibitSignal)=Inhibit)) & !((next(ivReset)))) : Inhibited;
 (!((next(InhibitSignal)=Inhibit)) & ((next(AltitudeStatus)=AltitudeBad)) & !((next(ivReset)))) : FailureDetected;
 (!((ASWOpModes=FailureDetected)) & !((next(InhibitSignal)=Inhibit)) & !((next(AltitudeStatus)=AltitudeBad)) & !((next(ivReset)))) : OK;
 1 : ASWOpModes ;
 esac;

next(FaultDetectedVariable):=
 case
 (((next(ASWOpModes)=FailureDetected))) : 1;
 (((next(ASWOpModes)=OK))) : 0;
 1 : FaultDetectedVariable ;
 esac;

next(DOI_Intended):=
 case
 ((((next(ivReset))=1))) : Un_defined ;
 ((next(AltitudeStatus)=Below) & !((AltitudeStatus=Below)))
 &!((next(ASWOpModes)=Inhibited))&!((next(ivReset)))&!((AltitudeStatus=Unknown))) : PowerOn;
 (((next(AltitudeStatus)=Above))&(!((next(ASWOpModes)=Inhibited)) & (ASWOpModes=Inhibited)))|(((next(AltitudeStatus)=Above) &
 !((AltitudeStatus=Above)))&!((next(ASWOpModes)=Inhibited))&!((next(ivReset)))) : PowerOff;
 1 : DOI_Intended ;
 esac;

MODULE BelowThreshold(AltitudeThreshold,Altitude1,AltitudeQ1,Altitude2,,AltitudeQ2,Altitude3,AltitudeQ3)
VAR
 result : boolean;

ASSIGN
 init(result):=0 ;
 next(result):= (((next(AltitudeQ3)=Good)) & ((next(Altitude3)<AltitudeThreshold))) | (((next(AltitudeQ2)=Good))&((next(Altitude2)<AltitudeThreshold)))
 | (((next(AltitudeQ1)=Good)) & ((next(Altitude1)<AltitudeThreshold)));

MODULE AboveThresholdHyst(AltitudeThreshold,Hysteresis,Altitude1,AltitudeQ1,Altitude2,AltitudeQ2,Altitude3,AltitudeQ3)
VAR
 result : boolean;

ASSIGN
init(result):=0 ;
next(result):= /* true if all of the altitude values are above the threshold hysteresis
 false , other wise */

Figure 7. Fraction of NuSMV code for the ASW system

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

DOI turned off late if
one altimeter has a
negative deviation

Threshold + Hysteresis

Threshold

Non-deviated trajectory

Positive deviation

Negative deviation

DOI turned on early
if one altimeter has
a negative deviation

Figure 8. A negative deviation will turn on the
DOI early. A positive deviation will have no
effect.

the removal of the input variable declarations and the macro
declarations; the macro declarations are referenced from
both sub-processes and do not need to be declared twice.

MODULE main
DEFINE
 Altitude1_Deviated := Altitude1 + Deviation;

VAR
 --- declare input variables ---
 Altitude1 : 0..40000 ;
 AltitudeQ1:{Good,Bad,Un_defined } ;
 Altitude2 : 0..40000 ;
 AltitudeQ2:{Good,Bad,Un_defined } ;
 Altitude3 : 0..40000 ;
 AltitudeQ3:{Good,Bad,Un_defined } ;
 InhibitSignal: {Inhibit,NoInhibit};
 ivReset : boolean;

--- declare deviation limit
 Deviation: -100..100;
--- declare sub-systems
 ASW_Original : ASW(Altitude1, AltitudeQ1,Altitude2,AltitudeQ2,
 Altitude3, AltitudeQ3,InhibitSignal,ivReset);
 ASW_Deviated : ASW(Altitude1_Deviated, AltitudeQ1,Altitude2,
 AltitudeQ2, Altitude3,AltitudeQ3,InhibitSignal,ivReset);
SPEC
 AG(ASW_Original.DOICommand=On -> ASW_Deviated.DOICommand=On);

--- subsystem definition
MODULE ASW(Altitude1, AltitudeQ,Altitude2,AltitudeQ2,
 Altitude3, AltitudeQ3,InhibitSignal,ivReset)
/* the code is the same as the code in the original ASW system except for the
 removal of the input variable declaration and the macro declaration */

/* the common macro declaration part */
MODULE BelowThreshold(..)
....
.....

Figure 9. NuSMV code for deviation analysis.

The property “The deviated system signals the DOI com-
mand On whenever the correct system signals the DOI com-
mand On” can be specified in CTL as

AG(ASW Original.DOICommand=On →
ASW Deviated.DOICommand=On)

Since the model includes several integer variables over a
large domain, such as Altitude1: 0..40000;, model check-

ing the ASW system is not feasible without using some
abstraction. The change of the integer values in the ASW
is not constrained, i.e., the altitude values are random in-
put. Therefore, we can apply a simple domain reduction
abstraction [1] to reduce the size of the domain without af-
fecting the behavior of the system.

At a high level, the idea behind the simplest version of
domain reduction abstraction is to partition the input do-
main based in the collection of numeric guarding conditions
in the model. We then reduce the domain to a set of ran-
dom representatives, one from each equivalence class. In
the ASW mode we can identify six numeric guarding con-
ditions.

Altitude1 < AltitudeThreshold

Altitude1 > AltitudeThreshold + Hysteresis

Altitude2 < AltitudeThreshold

Altitude2 > AltitudeThreshold + Hysteresis

Altitude3 < AltitudeThreshold

Altitude3 > AltitudeThreshold + Hysteresis

The constraints produce the following data equivalence
classes.

ai1 : Altitude#i < AltitudeThreshold

ai2 : Altitude#i ≥ AltitudeThreshold ∧
Altitude#i ≤ AltitudeThreshold + Hysteresis

ai3 : Altitude#i > AltitudeThreshold + Hysteresis

where i = 1..3. After selecting a representative value from
each equivalence class, the domain of each altitude variable
is reduced to Altitude#i : {1999, 2001, 2201}. We proved
in [1] that a system model with such a reduced domain bi-
simulates the original system model.

After applying the domain reduction abstraction,
NuSMV easily checks the property and generates a counter
example as shown in Figure 10. The variables with a d sub-
script in the lower half of the table are the variables in the
deviated system—there is a [-100..100] deviation in Alti-
tude1. The issue highlighted by the counter example is a
startup problem caused by our definition of the initial sys-
tem behavior.

A graphical view of the startup scenario can be seen in
Figure 11. At system startup, the state variables Altitud-
eStatus and DOICommand are given the value Undefined
since we do not know if we are above or below the thresh-
old and, consequently, we do not know if the DOI should
be on or off. In this initial version of the ASW, we do
not assign a new value to the DOICommand until we cross
one of the thresholds (either we drop below the threshold
or we raise above the threshold plus hysteresis)—note that
we turn the DOI on and off based on the event of crossing
the thresholds, not based on the conditions of being above

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

Variable/Step 1 2 3 4
Altitude1 Undefined . 2201 1999
Altitude2 Undefined . 2201 1999
Altitude3 Undefined . 2201 1999

AltitudeStatus Undefined Unknown Above Below
DOICommand Undefined Undefined Off On

Altitude1 d Undefined . 2191 1999
Altitude2 d Undefined . 2201 1999
Altitude3 d Undefined . 2201 1999

AltitudeStatus d Undefined Unknown Unknown Below
DOICommand d Undefined Undefined Undefined Undefined

Figure 10. A counter example trace

DOI turned off in non-deviated system
- AltitudeStatus changes to Above

Threshold + Hysteresis

Threshold

Deviated system never crosses threshold
- AltitudeStatus remains Below

DOI turned on in non-
deviated system

DOI not turned on
since we remain Below

Non-deviated trajectory

Deviated trajectory

Figure 11. The startup scenario problem.

or below. Therefore, the value of the DOICommand does
not change to Off until the AltitudeStatus becomes Above—
the DOICommand will remain Undefined until this event
happens. The counter example shows that if we have a neg-
ative deviation, the original system raises above the thresh-
old plus hysteresis, thus setting the AltitudeStatus to Above
and the DOICommand to Off. The deviated system, on the
other hand, is still considered to be below the threshold be-
cause of the negative deviation so no action is taken. When
the aircraft now descends below the threshold, the original
system’s AltitudeStatus will change from Above to Below—
an event that will cause the DOI to be turned on. Since
the deviated system never changed AltitudeStatus to Above,
the event of changing from Above to Below will never take
place and, consequently, the DOI will not be turned on. We
have discovered how a critical function can be effected by
a deviation in one altimeter despite our conservative voting
mechanism.

After analyzing the counter example, one would expect
that the system would tolerate the deviation if we changed
the startup behavior of the system—we will now allow the
DOI to be turned on immediately at startup if we are below
the threshold and off if we are above threshold hysteresis
no matter what the previous value of AltitudeStatus was; at
startup we will no longer wait for the event of crossing the
thresholds to occur. With this modification in startup behav-

Threshold + Hysteresis

Threshold

The system
is inhibited

DOI turned on in non-
deviated system

The inhibit
is removed

Non-deviated trajectory

Deviated trajectory

Deviated system believes it is below threshold, but
DOI cannot be turned on because we are inhibited

Figure 12. The inhibit scenario problem.

Variable/Step 1 2 3 4
Altitude1 Undefined . 2201 1999
Altitude2 Undefined . 2201 1999
Altitude3 Undefined . 2201 1999

AltitudeStatus Undefined Unknown Above Below
DOICommand Undefined Undefined Off On

Altitude1 d Undefined . 2191 1999
Altitude2 d Undefined . 2201 1999
Altitude3 d Undefined . 2201 1999

AltitudeStatus d Undefined Unknown Unknown Below
DOICommand d Undefined Undefined Undefined On

Figure 13. Corresponding trace after correc-
tion

ior the problem is solved, the trace in Figure 10 would be-
come the trace shown in Figure 13. The problem, however,
was not that simple; the model checker quickly found an-
other counter example trace related to the inhibit signal that
prevents the system from issuing output commands. The
counter example in Figure 14 shows this case (a graphical
illustration is available in Figure 12); if we have a negative
deviation in one altimeter, the value of AltitudeStatus of the
deviated system becomes Below in the second state because
of the deviation (the deviated variable is less than the thresh-
old) but the ASW cannot set the value of DOICommand to
On since it is inhibited. The original system stays above
the threshold in this state. In the next state, the aircraft de-
scends below the threshold and the inhibit is removed. The
original system can set DOICommand to On since it is not
inhibited and the event Above to Below occurred, but the
deviated system still cannot set DOICommand to On since
in this system the event happened while it was inhibited.

When this problems is corrected, a similar issue is raised
with an ASW reset function that is designed to bring the
system back to its initial state. Although our ASW can be
corrected so that it does tolerate deviations in one altime-
ter, the example serves to demonstrate how a fault tolerance
mechanism that will ‘obviously correct the problem’ ex-
hibits undesirable behavior under various non-obvious cir-
cumstances. In our limited experience with deviation anal-
ysis, the problems exposed seem to be related to startup

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

Variable/Step 1 2 3 4
Altitude1 Undefined . 2001 1999
Altitude2 Undefined . 2001 1999
Altitude3 Undefined . 2001 1999

AltitudeStatus Undefined Unknown Unknown Below
Inhibit Undefined . Inhibited NotInhibited

DOICommand Undefined Undefined Undefined On
Altitude1 d Undefined . 1964 2026
Altitude2 d Undefined . 2001 1999
Altitude3 d Undefined . 2001 1999

AltitudeStatus d Undefined Unknown Below Below
Inhibit d Undefined . Inhibited NotInhibited

DOICommand d Undefined Undefined Undefined Undefined

Figure 14. Counter example trace after cor-
rection

behaviors, temporary shutdowns and inhibits, and system
reset behaviors—well known problem areas in critical sys-
tems [4].

6. Discussion

In this paper we reported on an effort to perform devi-
ation analysis using standard model checkers. Our work
is an alternative to other approaches based on a symbolic
execution of the system models and promises to provide a
more accurate analysis than what was previously possible.
In our, admittedly very limited, experience, deviation anal-
ysis through model checking works well and has helped us
identify problems in smaller examples. More work is nec-
essary before the feasibility of the approach on larger prob-
lems can be determined. The future challenges mainly fall
in two categories: comparative evaluation and conquering
the state space explosion problem.

Here, we showed that deviation analysis through model
checking can be effective in pointing out subtle problems in
a system model. We did not, however, make any claims as to
the relative effectiveness of tackling real world safety analy-
sis problems with our approach compared to other proposed
techniques. We believe the exploratory nature of the origi-
nal devaition/perturbation analysis will nicely complement
the more verification-oriented nature of deviation analysis
through model checking. The interaction of the techniques,
and a possible incorporation of theorem proving and model
checking techniques in our perturbation analysis are issues
worth further study.

The size of the representation of the state space and the
next state relation are the limiting factor when model check-
ing larger systems. Since we are in essence simultaneously
analyzing two copies of a system (correct and deviated),
we have many more variables to contend with. We hope,
however, that existing abstraction techniques in conjunction
with techniques currently under development at the Univer-

sity of Minnesota will help address this problem so that de-
viation analysis through model checking will become us-
able on realistic systems.

References

[1] Y. Choi, S. Rayadurgam, and M. Heimdahl. Automatic ab-
straction for model checking software systems with interre-
lated numeric constraints. In Proceedings of the 9th ACM
SIGSOFT Symposium on the Foundations of Software Engi-
neering (ESEC/FSE-9), pages 164–174, September 2001.

[2] CISHEC. A Guide to Hazard and Operability Studies. The
Chemical Industry Safety and Health Council of the Chemi-
cal Industries Association Ltd., 1977.

[3] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking.
MIT Press, 1999.

[4] M. S. Jaffe, N. G. Leveson, M. P. Heimdahl, and B. E. Mel-
hart. Software requirements analysis for real-time process-
control systems. IEEE Transactions on Software Engineer-
ing, 17(3):241–258, March 1991.

[5] T. Kletz. Hazop and Hazan: Identifying and Assessing Pro-
cess Industry Standards. Institution of Chemical Engineers,
1992.

[6] J. McDermid and D. J. Pumfrey. A development of hazard
analysis to aid software design. In COMPASS ’94: Proceed-
ings of the Ninth Annual Conference on Computer Assur-
ance, pages 17–25. IEEE/NIST, June 1994.

[7] S. P. Miller and A. C. Tribble. Extending the four-variable
model to bridge the system-software gap. In Proceedings
of the Twentith IEEE/AIAA Digital Avionics Systems Confer-
ence (DASC’01), October 2001.

[8] NuSMV: A New Symbolic Model Checking. Available at
http://http://nusmv.irst.itc.it/.

[9] J. Reese and N. Leveson. Software deviation analysis. In In-
ternational Conference on Software Engineering, May 1997.

[10] J. Reese and N. Leveson. Software deviation analysis: A
“safeware” technique. In AIChe 31st Annual Loss Prevention
Symposium, March 1997.

[11] J. D. Reese. Software Deviation Analysis. PhD thesis, Uni-
versity of California, Irvine, 1996.

[12] J. M. Thompson, M. P. Heimdahl, and S. P. Miller. Spec-
ification based prototyping for embedded systems. In Sev-
enth ACM SIGSOFT Symposium on the Foundations on Soft-
ware Engineering, number 1687 in LNCS, pages 163–179,
September 1999.

[13] M. W. Whalen. A formal semantics for RSML−e. Master’s
thesis, University of Minnesota, May 2000.

Proceedings of the 17 th IEEE International Conference on Automated Software Engineering (ASE’02)
1527-1366/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

